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MILLER , GRADY . Some Results on Symmetric Stable Distributions and

Processes. (Under the direction of STAMATIS CP1MBANIS.)

This work investigates properties of symmetric stable distribu-
/ 

tions and stochastic processes. A necessary and sufficient cond i tion

is presented for a regression involving symmetric stable random

• variables to be linear. We introduce the notion of n-fold dependence

for symmetric stable random variables and under this condition char-

acterize all monomials in such random variables for which moments exist.

A function space approach to symmetric stable stochastic processes is

developed and applied to the problem of system identification. Neces-

sary and sufficient conditions are given for the existence of measurable

modifications of such processes and for the almost sure integrability

and absolute continuity of sample paths.
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• • INTROD UCTION A ND SUMMARY

It is well known that the stable laws arise naturally as the limiting

distributions of normed sums of independent identically distributed

random variables (or vectors) , and this result has been extended to

Banach space valued random variables ([Kumar and Mandrekar 1972]) as

well as to random variables with values in certain topological vector

spaces ( [Rajput 1975]). The limiting distributions that have inf ini te

variance can be typed by a parameter a , 0 < a < 2 , and only absolute

moments of order strictly less than a are finite , whereas in the finite

variance case (a = 2) the limiting distribution is always normal and

all moments exist. Even though stable laws on the real line are abso-

lutely continuous , closed form expressions for their dens ity functions

are known in only a few cases . In contrast, the characteristic functions

of stable measures on finite or infinite-dimensional spaces are quite

simple ([Kuelbs 1973]) and therefore constitute a primary tool in our

research.

Many easily formulated problems involving stable distributions on

Euclidean n-space remain unsolved , and the study of multivariate stable

distributions is continually being renewed (as in [Hosoya 19761). Since

the normal distributions have been extensively investigated, our efforts

are directed main ly toward stable distributions that have 0 < a < 2 and

( for simplicity) that are symmetric . If the symmetric stable random

• variables are defined on a probability space (cl ,F ,P) ,  then they belong
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to the complete metric space L~@~ F~P) where 0 < p < a < 2 in the infini te

variance case and to the Hu bert space L2@2,F,P) in the normal case . Our

basic approach is to extend results known for normal distributions to

symmetric stable distributions , and many of the difficulties which arise

are due to the more complicated structure of L~ spaces and (for p � 1) the

lack of a simple representation for the dual elements such as exists for

an inner product space. Consequently our development often originates

with p- th order random variables and then is narrowed to include only

symmetric stable random variables. One of the most notable advantages

of specializing to the stable case is that here the notion of independence

provides a satisfactory and useful analogy to the concept of orthogonality

for random variables with finite second moments.

Stminary

The first chapter begins with basic definitions and characterizations

on infinite-dimensional spaces, but deals mostly with problems in an n-

dimensional Euclidean space setting. The principal results give necessary

and sufficient conditions for independence of random vectors, linear re-

gression, and finite absolute moments of monomials.

In the second chapter we study the structure of the linear space of

a symmetric stable process (a > 1) and use this structure to represent

elements in the linear space (under certain conditions) as stochastic

integrals of elements of a function space A (or A0). Conditions for

independence, best linear approximations, and expressions for dual elements

are obtained in terms of these representations. These results are

applied to the problem of linear system identification when the input is

a symmetric stable process.

. 1



.-, .“• --—---•,• 
~

. 1T~~~~~~”~~~ 
z_.~____ ~,,_w ~

,
.

3

The final chapter contains necessary and sufficient conditions

for the measurability of p-th order or symmetric stable processes and

for the integrability or absolute continuity of sample paths of symmetric

stable processes, as well as sufficient conditions for absolute continuity

of sample paths of p- th order processes .
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I. INDEPENDENCE , REGRESSION , AND MOMENTS

Multivariate stable distributions and their characteristic functions

have been known and studied for many years , but the subject continues

to attract the attention of researchers (e.g., [Press 1972, Paulauskas

1976]). Still unanswered are some quite natural questions surrounding

such topics as the properties of conditional distributions or the effects

of nonlinear transformations on stable distributions. In the first two

sections of this chapter we discuss definitions and results that will

be of use to us later , and in the latter two we present some develop-

ments on regression analysis and moments for jointly symmetric stable

random variables.

1. Fundamental definitions and characterizations.

In this section we define a stable measure on a Banach space and

state some characterizations of the characteristic function (c.f.) of

a symmetric stable measure on a Hilbert space. This material is well-

known for stable measures on n-dimensional Euclidean space R’~, but has

only recently been extended to infinite-dimensional spaces. Even though

we shall rarely consider stable measures on spaces other than R’~’, the

additional generality provided here will occasionally be needed .

Let E be a real separable Banach space and for every acR define

F the continuous map Ia: E F by Ta(X) = &x. A probability measure ~

on the Borel subsets of E is said to be stabi~ if for any a > 0 and

h > 0 there exists c 0 and x E such that 

-~~~~~~~~
--

~~
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(pT~~) (pT~~) = (IJT
~
1
)

where is the Borel probability measure satisfying O~
( {x }) = 1 and

€ denotes the convolution operation.

Let E* be the dual space of E and C be the space of complex numbers.

The c.f. of a Borel probability measure p on E is a map ~: E* -
~ C de-

f ined by

~ (w) = I e~W~~ ~~
)

E

for all wEE*. It has been shown ([Ito and Nisio l968]) that a Borel

probability measure on a real separable Banach space is uniquely deter-

mined by its c.f. The following characterization of a stable measure

is given by [Kumar and Mandrekar 1972] and IRaiput 1975].

1.1.1 A Borel probability measure p on a real separable Banach space

E is stable if and only if  for every integer n � 1 there exists x~€E

such tha t iw(x )
n ~~~1/cr fl[p(w) ] = p(n w)e

for every wEE*, where a is uniquely determined by p and satisfies

0 < a 5 2.

It is customary to say that the measure p is a-stable whenever the

condition in 1.1.1 holds . A measure p on E is said to be symmetric if

p (B) = i ( -B)  for every Borel set B. For a symmetric a-stable (SoS)

measure p we have x~ = 0 in 1.1.1 for all n. It is straightforward

to check that p is a SoS measure on E if and only if pw~~ is a SoS

measure on R for every wd*.

• —— .~~~ - •— ~~~~~~~~~~~~~~~ •.—-• • • -
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Let us restrict attention to SoS measures on a real separable hu bert

space I-I with inner product (.,.,~ 
and unit sphere S = {xEH:~(x ,x)) = 11.

Then the SoS c.f. is characterized in [Kuelbs 1973, Corollary 2.11.

1.1.2 A map ~: I-I -
~ R is the c.f. of an SoS measure on H if and only

if it can be written in the form

~(y) = exp{- I ~x ,y~!°r (dx)}S

for every ycH~ where F is a finite symmetric Borel measure on S.

If H = R’~ and 0 < a < 2 , then the symmetric measure I’ on S is uniquely

determined by the SoS measure ([Kanter 1973, Lemma 1]) , and we shall call

F the spectral measure of the SoS distribution (or c.f.) as is done in

[Paulauskas 1976, p. 357]. If a = 2 , then ~ is the c . f .  of a Gaussian

measure (or distribution). Whenever the distribution of a random vector

(~~~~~
,.. . ,~~) is an SoS measure on R”, we shall refer to E 1, .. . ,

~~~~ 
as

jointly SoS random variables.

We now present another characterization (also due to Kuelbs) of the

SOS c.f. on H after introducing some additional terminology. Let T be

the topology induced on H by the seminorms of the form /Ty,v)~~
2, where

I is a symmetric, positive, trace class operator on H. An even, real-

valued function f on H satisfying f(0) = 0 is said to be of ~:o~jcti:’~ ~~pc

if n
f(Y~~Y~ )c

1c~ 
s 0

for al l n , al l  y1,. . . ~v~€H~ and al l real numbers c1,.. . ,c~ such that
~~~1c. 

= 0. If f° is of negative ty1~e and if f(\y) 
= X~ f (y )  for al l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



real A 4and yEH , then f is called a homogeneous negative-definite function

of order a.

1.1.3 [Kuelbs 1973, Theorem 3.1] A map 4: H -
~~ R is the c.f. of a SoS

measure on i-I if and only if it has the form

~(y) = exp{-f°(y) }

where f is a homogeneous negative-definite function of order ~ w~~c~ is

i-continuous on H.

A stochastic process ~ = {~t,tcT} is called SoS if its finite-
dimensional distributions are SoS. When a = 2, ~ is a zero mean Gaussian

process and its statistical properties can be expressed in terms of a

single function, the covariance function. However, when 0 < o < 2, there

is in general no simple parametric description of the finite-dimensional

distributions of the process.

A special class of SoS stochastic processes which are closely related

to Gaussian processes and which have an equally simple parametric descrip-

tion are the so-called sub-Gaussian processes. Nevertheless the sub-

Gaussian processes have quite different properties from the a = 2 case ,

some of which are ment ioned in [Bretagnolle , et al. 1966 , p. 251].

To introduce the sub-Gaussian process we begin with a zero mean

Gaussian process ~~~ t~T} with finite-dimensional c . f .  ‘s of the form

given in result 1.1.3: for every n and every ~~~~ .

~ (r 1,.. .,r ) = exp {-f 2 
~ 

(r 1,. . ., r )},
t ’•

~~
•’ t 1’...’

1 n

where is a homogeneous negative-definite function of order 2. 

-- ---- •.~-.• • • . • .~~~~ -•. -~ -- • -• .• ,•.-~.-  
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It is well known that if a function ~i is of negative type, then ~~

is of negative type for all p such that 0 < p < 1. (See[Parthasarathy

and Schmidt 1972] for a general discussion.) Thus it follows from

1.1.3 that

exp{-f~ ~ ~
r1,...,r )}

is an SoS c.f. on R” for any a such that 0 < a < 2. The family of all

such SoS c.f. ’s, for n = 1,2,... and (t1,.. ~~~~~~~ clearly specifies a

consistent family of finite-dimensional distributions and hence a stoch-

• astic process. We shall use the term a-sub-Gaussian to refer to finite-

dimensional distributions having c.f. ’s of this form as well as to such

SoS stochastic processes.

Note that the distribution of an a-sub-Gaussian vector is determined

by o and a positive-definite matrix ~ and that the distribution of an

a-sub-Gaussian process is determined by a and a positive-definite function

.~(s ,t). Hence sub-Gaussian distributions have a particularly simple para-

metric descr iption , unlike the general SoS distribution. However, it is

not known how the spectral measure of a sub-Gaussian vector is expressed

in terms of a and z.

While stable measures on a separable Banach space suffice for our

purposes, we may mention that [Dudley and Kanter 1974] and [DeAcosta

1975} treat stable measures on more general “measurable vector spaces,”

and [Rajput 19751 defines certain stable measures on topological vector

spaces.

• ~~•-—-~~~~- -~~~~~~~-— .—-• --~~~~~~ - - • - .  _
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2. Independence

The question of how to characterize the independence of jointly SoS

random variables is a natural one and has been answered in [Schilder

1970 , Theorem 5.1] and in [Paulauskas 1976 , Proposition 4] .  Although *

these results by Schilder and Paulauskas are stated correctly ,  the proofs

as they appear are not convincing and a more detailed treatment seems

justified. The implications of independence are important for us in

the following chapter when we consider SaS processes having independent

-t increments; so in this section we prove a characterization of independence

for jointly SoS random variables or vectors in terms of the support of

their spectral measure.

1.2.1 THEOREM. Let ~~~~ ,
~~ 

be jointly SoS random variables with

O < a < 2 and spectral measure F. For fixed k and m satisfy ing

1 � k < m s n, 
~k 

and 
~m 

are independent if  and onl y i f  r({(x1,. . . ,x~ kS:
XkXm~~~

O}) =0 .

This result is essentially due to Schilder, but its proof here is

based on Lemma 1.2.2 which we state and prove first. The technique used

in the lemma was motivated by the proof of Lemma 1 in [Kanter 1973].

. . .  dsDefine the a-finite measure p on (O ,co) by p (ds) = —ri-- define

e: (0,co) x Rn ,. Rn by 8(s,x) = sx , and define T: R’~ -~ R
n by T(x1 ,...,x~)

= 

~~l’ ”’~n~ 
where 

~k 
= xk, 

~m 
= X

m~ 
and y~ = 0 if i ~ k and i ~ m.

Let v = FT 1 and C = (pxv)0 1. Choose four real numbers hk, hm~ h1~,

h~ such that

f(v) = ~ (2-cos h.v. 
- cos h!v.) > 0

j=k,m

~



10

whenever Vk ~ 0 or Vm ~ O~

1.2.2 LEMMA. The f u n c t i o n  ip :  R~ 
-
~~ R defined by

~ (r ) = I Irkxk +

unique ly determines the measure f(v) G(dv) on Rn

Proof: Notice that

~(r) = I I(r~Tx)I°r(dx) = f i~r~x)I°v (dx)
Rn

for all r€R” and that for all zcR

zt ° I (1-cos s)p(ds) = f (l-cos :s)p(ds)
0 0

Thus

~(r) f (1-c~~ s)p(ds) = f I I ( r ~x~ l° (l-cos s)p (ds)~ (dx )
0

= f n(.l~cos(r,sx)
)(pxv)(dsxdx) = f (l-cosKr ,v))G(dv)

• (O ,co) x R  Rn

for every rfR
Tl . Let 6k 

= 
~~ .0 . . .  ,hk , .  . . 0 . . . )  and = ( . . .0 . . .  

~~~~~
0...), where the coordinates hk and are in the k-th and m-th posi-

tiors, respectively. Then for every rER
n the function qi determines

j ~,m 
~~~ c0s + 0~~~v)) + (l cO5(r 6 1 , v~ ) - 2(l cos~(r~v~) ]G(d v)

- 
- 

. J~ 
cos(r,v) ~ (1-cos h-v. )C(dv)R j=k ,m

i/r ,v\
= e ‘ “ ~ (1-cos h.v.)G(dv) ,
R j=k,m

since G is a symmetric measure. Thus q determines the value of 

-- 
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i/r ,v\
e ‘~ 

~(v)G(dv) for every r~R
’
~. Since f(v)C( dv) is a f inite measure

R
on R1

~, the result follows from the uniqueness of the 
Fourier transform. U

Proof of Theorem 1.2.1: If and are independent , then their joint

c . f .  factors . Thus for every real rk and

f lr kxk+rmxm j r (dx) = I r k ! f i x k I r(dx) + jrm I° f i x  j°r(dx)

Consider the measure r0 on S placing mass -
~~

- JIx ki °r(dx) on (...0...,

l , . . . O . . . )  and on ( . . . 0 . . . , -l , . . . 0 . . . ) ,  where the 1 and -l are the k-th

coordinates ; placing mass 
~ f xm l°F(dx) on (...0... ,l,. . .0...) and on

(...0... ,-1,. . .0...), where the 1 and -l are the m-th coordinates ; and

placing mass zero on the remainder of S. Then clearly

(*) flrkxk
+rxm i r(dx) = f!rk~~ rmx I r o(dx)

for all rk, rm . Let = F0T ’ and G0 = (pxv 0)0 1. Define
• B = {vsR~: vkvm ~ 

O} and observe that

R~ 

X B(v)f(v) GO (dv) = 

~I~n~~
f 5 0 5x

~
= I I X{x x �O}( S V 0 dX)P(dS ) = 0 ,

since v0 ( {x~Rn : XkXm ~ 0}) = r0(~x€S: XkXffl ~ O}) = 0. By (*) and Lemma

1.2.2, f(v)G(dv) and f(v)G0(dv) must agree on B. Hence

0 = I XB (v)f(v)G(dv)
R’~

= 

~~ n
X(xkxm~

O} (x)f( sx)v(dx)P (ds) ,
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so that f X{x ~ ~0} (x)f(s 0x)v(dx ) = 0 for some s0 > 0. Because

Rn k m

f(s0x) > 0 on {x
kxm~

0}, we get that

O=v( {xERnl: XkX~~
Ofl = F(~xES: XkXm~OJ) -

Conversely, r({x€S: XkXm~0J) 
= 0 implies that

I rkxk + r x l °F(dx ) = 

x~~0 
+ 

xk=
1
0 

+ 

Xk O 
+ 

xk~0] 
Vk

xk
+rmxml

°F (th)

X = O  X~~O X~~O X~~O

= Irki fix ! F(dx) + rm l °fIx I°r(dx) -

Thus 
~k 

and are independent since their joint c.f. factors. U

1. 2 .3 COROLLARY. A subset 
~~~ ~ k 

} of {F~1,. ~~~ is independent1 i
if and only if the random variables are pairwise independent.

Proof: Necessity is clear. For the sufficiency, r is concentrated on

the set {Xkp
Xkq 

0, p ~ q in 1,2,... ,i} and therefore we have

I r~ Xk ~ 
.+rk Xk r(~~S 1 1  i i

= + . .+ 1 r X
~K 

+ . .+rk x, 
°F(dx )

{x k . .=Xk =O} ~k 
=

~ 
..=X k =0}~ 

k1 1 1 1’i
2 i 1 i-l J

= fir k Xk 1 F ~~~~~ .
+ fir k ~ I °F(dx) .

S 1 1  S i i

1.2.4 COROLLARY. Let {k1,. . . ~k~} and {m1,... ~m~} be dis~ oint subsets

of {l,. . . ,n }. Then the random ~‘ec t~ rs 
~~k ~~~~~~ 

‘~k) 
and (~~ ~~~~~~~~~~~ 1 • 1 i 1 j 
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are independent if and only if any two random variables, one selected

from each vector, are independent.

Proof: Necessity is clear. For the sufficiency, observe that

~c’.

f i r  x + .. . +r x +r x - . • . +r x i °F(dx)
k1 k1 k1 k. m1 in1 m

1 
m~

= I I I I ~i ” i °r(dx)

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ‘x~~ + . . . +x~~~ 0 x~~ +~~~.+x~~ =0

x~
1

+ . . ~~~~~~~ 1x~ 1
+ .. .+x~~~O x~

1
+.. .+x~~~O x~

1
+. . .+x~~~O J

= f irk Xk ~~ • .+rk x~ !
°F(dx) + firm X ~~. . . +r x i

aF(dX)
S 1 1 i~~i 5 1 1

• since F {x~ +. . ~~~~ ~ 0 and x~ +. . ~~~~ ~ 0} = 0 by Theorem 1.2.1. U
1 i 1 j

1.2.5 Example. If and are jointly SoS random variables with

0 < a < 2 and spectral measure F, then 
~~~~~ 

and are independent if

and only if F is concentrated on

{x 1x3 0} U ~x2x3=0} 
= {x 3 0} U {x1 0 and x2 0}

= (x~ + x~~.l} U {x3 ±l}

x 3
‘IC

~~~~~~~~~~~~~~~~~~
X2

-

~

.-

~

•-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - •~~ -~~~~~- -  - -- ~~~~~~~~~~ - . , ~~~~~~~ -•-~~~~~~~~~~~~ - -
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1.2.6 Example. It is easy to check from their c.f. that two non-

degenerate j ointly sub-Gaussian random variables (0 < a < 2) cannot
- 

- be independent . Indeed , consider the bivariate normal c . f .

- 1 2 2  2 2exp{-2 (a1r1 
+ 2o12r1r2 

+ a2r2
)}

where > 0 and > 0 are the marginal variances and 012 is the co-

variance . Then

~(r1, r2) = e~~{-2 
2(a~r~ + 2a12r1r2 

+

is the joint c.f. of two nondegenerate sub-Gaussian random variables

that are independent if and only if
a

2 2  2 2 2  a a a a
• (*) (a1r1 

+ 2a12r1r2 
+ 02r 2) = 011r 1 1 + a21r 21

4 
-

for all r1,r2. The left-hand side of (*) is never zero when r2 ~ 0;

so we hold r2 ~ 0 and differentiate both sides with respect to r1 to get

o r  ~~o r1 1  122 a a-l___________________________ 
= a ~r ~2-a 1 1

2 2  2 2 2(a1r1 + 2a12r1r2 
+ 02r2)

whenever r ~ 0, which becomes2

+ a~a12ir 2i° = o~a12 Ir 1I ° + o~o~(r1)
a l r,

after substituting (*) and simplifying . Taking r1 = 0 and r2 = 1

we see that 012 0; so we now have

a~a~r1(r2)°~~ = a’
~o~(r1)

°1r2

whenever r 2 / 0 , which implies that 0102 = 0, a contradiction . (Note:

when raising a number u to a power p we shall use the convention
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• (u)~ = !u I’~ sign(u) .)

3. Regression .

In this section we obtain a necessary and sufficient condition,

• expressed in terms of their spectral measure, for a regression involving

S~S random variables to be linear (Theorem 1.3.7). This is a consequence

of a result relating the form of the linear regression function to par-

tial derivatives of the joint c.f. (Theorem 1.3.1). We also obtain
-I

a sufficient condition for linear regression (Proposition 1.3.8) which

is simpler than the necessary and sufficient condition in Theorem 1.3.7,

but nevertheless has some interesting applicat ions .

Let 
~0’~l

’” ‘~n 
be jointly SoS random variables with I < a < 2.

For an SoS distribution on R it is well-known that the moments of order

p < a exist, and it is therefore meaningful to consider E(~0I E 1,... ,~~)

and to study the form of f for which

E(~ 0 IE~1,... ,~~
) = f(~1,. .. ,~~) a.s.

Kanter has obtained several results which show that f is a linear

function in certain cases. The regression E(~0 I~ 1) is always linear

(Corollary 1.3.4), as is the regression ~~~~~~~~~ ‘~n~ 
provided 

~~~
are independent (Corollary 1.3.6) ([Kanter 1972a]). In case

and E~~~ ,... ,
~~ 

are jointly SoS (a condition for which

criteria are not Imown),then once again the regression is linear

([Kanter 1972b]).

For our investigations we shafl use a general result giving a neces-

sary and sufficient condition for linear regression in terms of the joint 

—•-~~
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c.f. of the random variables (not necessarily stable). The method of

proof comes from a related result found in [Lukacs and Laha 1964,

Theorem 6. 1.1].

• 1.3.1 THEOREM. Let 
~o’~l’ 

. - ,
~~ 

be random variables having first

moments and wit h joint c . f .  ~~. Then

(*) E(ç~~1,.. . ,~~
) = a1~1~ . . .+an~n a.s.

if and only if

• [
~~

— ~(r0,r1,. - . ,r~)] 0

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 n

for  all r1,... ~~~

Proof: Observe first that the condition may be written as

-•

E[~0e 
1 1

i(r E,.~+. - .~r ~ ) i (r1~1+. . .-‘- r ~ )= a1E[~ 1e ‘~ ‘~ ]+ . . .+a~E~~~e 
n n

• for all r ,... , r -1 n

Necessity. (*) implies

~ 
) i ( r 1~ 1+ . .. +r •~ )

E(~0 I~ 1,.. ‘~n~~ 
n n 

= (a1~ 1+ . . .+a~~~)e ~ a .s .,

and (**) follows by taking expectations .

Sufficiency . Let E(~0-a1~1- .. ~~~~~~~~~~ ,
~~ 

= f(~1,. - - ‘~n~
where f is a Borel-measurable function on Rn. Then for all r1,.. .

. • •

~

• • . • • •

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~.
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we have that

i(rx + ...+ r x )
f f(x 1,. . . ,x~)e 1 1 n n 

~~~~ ~~~~~~~~~~~ . ,x~)
Rn

i(r 1~1+ .. .~ r ~ )
= E[f(

~
1,...,

~n
)e ‘~ n

i(r 1~1+ .. .~r ~ )= E[(~0-a1~1- . . .-a~~~)e 
n n 

~ 
=

by (**). Now

v(B) = f f(x1,. .. ~xn)dP (~ 1~~ ~~~~~~~~~~ 
.. ,x)

defines a finite signed measure (f.s.m.) on Rn which is therefore unique-

ly determined by its Fourier transform. Thus

,~~)dP

~~l’” ~~~~~~~~~

= 5 f(x1,... ,x )dP(~1,... ~ nY
1(x i~ . ~x~) = 0

for all Borel subsets B of R~, and since f(~ 1,.. ,
~~) is a °~~i’• 

. . ,
~~~~~

) -

measurable random variable, we get that f(~1,.. ,~~) 
= 0 a.s. [P] and

(*) follows . U

If the regression is l inear , then it is clear that the coefficients

a1,... ,an are uniquely determined by ~ if and only if 
~~~~

,. - -  ‘~ ri are

linearly independent elements of L1(c2 ,F ,P) .  For each choice of rcR~
the condition of Theorem 1.3.1 provides a linear equation involving the

a~’s~ but it is not clear in genera l what n choices of r€ R TI will provide

n l inearly independent equations which can be solved for the a
3
’s. 

--~~~~~~~ 
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• 1.3.2 Example. If 
~O’~ l ’• ~~ 

are jointly ct -sub-Gaussian random var-

iables , then the regression is linear and the coefficients are the same

as in the Gaussian case. For , let

,rn) = ~~ {-2~~ ~ o..r.r.]~~
1, 3 0

where ~ = (ci~~) is a covariance matrix . Then for r1,.. . , rn not al l

• zero,

______________  = 

-ct2

0 (
~~

. cy . . r .r . )  2
i ,j=l 13 1 j

and for 1 s k � n

,rn) -a 2 2
~ (0 ,r1,... ,rfl)~~

. la.k r .

~rk n 2(
~
. . a. .r.r.)
i,j 1 13 i j

Therefore the condition of Theorem 1.3.1 is written as

n n n
a .r. = 

~ 
ak ~ a.,r.

j=l Oj ~ k=l j=l ~~~~‘ ~

or 

j~ l 03 
- 

~~
o
~k~~

ir
J 

= 0

for all r1,... ~~~ and thus it is satisfied by the ak’s which are the

solutions of the system of equations

n

k~ l~~ k
al( = aOj, 

•

~ 
= 1,. . - , n .

_ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -- - - - -~~~~~~~-~~~~~~~~~~~~~~~~~
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Hence the regression is linear and the regression coefficients satisfy

the same equations Za = ~~, = (a1,.. ., an) ,  2~ 
= (aoi,. ..,aon) ,  as

when 
~O’~l’~ 

. ,
~~ 

are jointly Gaussian with mean zero and covariance

matrix ~~. 
-

.

1.3.3 COROLLARY. If 
~O’~ l’~ ‘~n 

are j ointly SoS with spectral measure

F on the un-~t sphere S in R’~~ , then

E(~0 i~ 1,.. 
~~~~ 

= a1~ 1~ . ~~~~~ a.s .

if and only if

f(x 0~a1xi~ ... -anxn) ( r 1x 1+ ... +rnxn)°*(dx) = 0

for  all r1,.. ., rn .

Before illustrating the use of Corollary 1.3.3 , we define the

covariation C~~ of ri with ~~ as

= ‘I X 1(X 2) °~~ F~~ ç (dX )

where q and ~ are jointly SoS with srectral measure Ffl~~
. (Note the

lack of symmetry in n and ç here.) The next result provides ~~ with

an interesting interpretation.

1.3.4 COROLLARY . [Kanter 1972a, Theorem 1.4]. i f  n and ~ arc

SoS random variables, then

E ( rj ~ ç )  ~~~ ~~ a .s .  - •

Proof: By Corollary 1.3.3, E(n I~) 
= aç a .s .  if and only if

_ _  __________________________
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I (x1-ax2)(~~2)°*~~~(dx) = 0

for all r€R . Solving for a yields

I x1(x2)°*~~~(dx) C

a = 

~ Ix 2i
0r
~,~

(th) 
C~~

For jointly Gaussian random variables n and ~ with zero mean (the

case a = 2) it is well-known that a result analogous to Corollary 1.3.4

holds with C~~ replaced by the covariance of n and c.

By appropriate ch ice of F it is easy to see from Corollary 1.3.3

that the regression can be nonlinear. For example, take n = 2 and

suppose that

• 
F(3 ’2,3 ’2,3~~~

2) = F(0,l,o) = r(0,0,l) = 1

and that F places zero mass on the remainder of S. (Note that F need

not be sylTlnetric unless we are concerned about uniqueness.) Then

• E( ~ 0 F~ 1,~ 2 ) is not a linear function of 
~l 

and however, even in this

simple case we do not know the form of the regression.

1.3.5 COROLLARY. If 
~0’~ l’~ 2 

are jointly SoS and if

= a1~1 + a2~2 a. s .,

then a1 and a 2 satisfy

a1c11 + a2c21 =

(*)
a1c12 + a2c22 = C02

I 

~~~-.  - - ---- -~~~~~~-.- -
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where Cj j  is the covariation of F~ with 
~~~

. Moreover , equations (* )

uniquel y determine a1 and a2 if and onl y i f  
~l 

and 
~2 

are linear ly

• independent elements of L1(Q).

Proof: If the regression is linear, then equations (*) follow immediately

from the condition of Corollary 1.3.3 by taking r1 
= 1, r2 

= 0 and

r1 = 0, r2 
= 1. These equations have a unique solution unless

• c11c22 = c12c21

i.e.,

I ix 1 I °F(dx)f ix 2 J °F(d~) 
= j X1(X2)a*(±)f x2(x1)°*(dx)• S S S S

which implies that x1 = Ax 2 a.e. [I’] for some XER by l-Iölder’s inequality,

hence~~1 A~2 a.s. U

If n > 2 and the regression is linear, then the regression coeff I-

cients a~ again satisfy l inear equations given by the condition in

Corollary 1.3.3. Unfortunately, just as in the non-stable case (Theorem

1.3.1), we do not know in general how to choose n linearly independent

• equations that can be solved for the a
3
’s.

The following corollary shows that the regression is always linear

and the regression coefficients are easily obtained whenever 
~l’~

• ,E~

are independent.

1.3.6 COROLLARY. [Kanter l972a, Theorem 3.4]. ~

are ~oi~z t ’~ SoS random variables and 
~f ~~~~~~ 

,
~~ 

are independent and

nondegenerate, then

E(~0i F 1,. ‘~n~ 
= a1~ 1~ . . ~~~~~ ~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~
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and the c o e ff f ~ ients ak ~~ ~~~ I,

-• 

Cok
- - —

where COk is the coL ’a r ia t i~~ f ~‘~ th and Ckkis the covariation

~~ 
~k 

with i t s e l f .

The proof follows easily from Corollaries 1.2.3 and 1.3.3.

We now obtain a condition for linear regression by applying to

Corollary 1.3.3 the methods used in Lemma 1.2.2. Although the resulting

condition appears surprisingly involved, it is not clear that further

simplification is possible.

Define T: Rn~~ Rn+l by T(y0,y1,.. •‘
~n~ 

= 

~~~~~~~~~~~ 
define

0: (0 ,oo) x 5 -
~~ R~~

1 by 0(s ,x) = sx, and define the a-finite measure p

on (0 ,co) by p (ds) = ds/s°. Let f(x) = x0 
- a1x 1- . . . -a~x~ , and define

a f .s .m.  v o n S  by v(dx ) = f(x)f(dx). Let C be the measure on R~~
1

defined by G = (pxv)0~~, and let G be the a-field of subsets

{RxB: B is a Borel subset of R” — ( 0 , . . .  ,0) }

of RX [Rn -(0,... ,O)].

1.3.7 THEOREM. Let 
~O ’~ l’~~

•• ,E~ be jointly SoS variables, 1 < a < 2,

with corresponding measure F on S. Then E(~Q R1,... ‘~n~ 
= a 1~ 1~ . .

a.s. i f  and onl y i f  C is the zero measure on G.

Proof: Assume that ~~~~~~~~~ ,~~) 
= a1~~ 4 . . ~~~~~ a.s. Then by

Corollary 1.3.3 ,

f f ( x ) ( ( r ~Tx~ )~~~ F(dx) = 0

for a l l  r .R ’~~
1 . Note that for any z~ R ,

j



‘
~~~~~~~~~~

23

(z) f sin s p (ds) = f sin(zs)p(ds)
0 0

Thus

0 = 5 f(x)(<r ,Tx>)a l F(dx) f sin s p (ds)

= f f sin<r,T(sx)>v(dx)p(ds)

= f sin<r,Tv>G(dv)

(*) = f sin<r,v>GT~~(dv)

• for all r€R

Let ~~~~~~~~ be any real numbers , and let 61 = (0,h1,0,...,0),

62 
= (0 ,0,h2,0,. . .,0),..., 6n = (0,.. 

~
O
~
hn)~ 

Then for every r~R
n
~~

0 = 
~ f [2 sin<r,v> - sin<r+6.,v> - sin<r-6.,v>]GT 1(dv)

j=l Rn+l 
3 3

n 1
= f sin<r ,v> ~ (1-cos h.v.)CT (dv)

R’~~
1 j=1 3

We can choose h1,. . ,h~ and ~~~ . . ,h~ such that either ~
? 1(l-cos h~

v~)

or ~~~1(l-cos hJv~) is nonzero 
for every vE{(v0,V1,... ,vn)ER~~

’:

> 0} . Let g(v) = ~~~1(2-cos h~
v~ 

- cos h~v~). Then for

every rcR~~
1,

f sin<r,v>g(v)GT 1(dv) = 0

• Now it is easy to see that g(v)Gr
1(dv) defines a f.s.m. on R~~

1 which is

antisymetric in the sense that

_  ~~~~~~~--~~~~~~~~~~~~~~--—~~~~~- - • - • - - ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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f g(v)CF 1(dv) = - f g(v)~rf~~(dv)-B B

for every Borel subset B of R~~
1. Thus for every r€R’~

1,

• i<r v> -1f e ‘ g(v)GT (dv) = 0. It follows by the uniqueness of the Fourier

Rn’fl

transform that g(v)GT~~(dv) is the zero measure on ~~~~ Hence CT ’

- n+1 ~. 2is the zero measure on f(v0,v1,. . - ,v~)~R : v1÷. . .+v > O}. Thus for

nevery Borel set B c R - (0,...,0), -

G(RxB) = GT 1(RxB) = 0 .

Therefore C is the zero measure on G. - •

For the converse, note that sin~zr ,Tv> is a G—measurable function on

RX IR
n 

- (0,... ,D)J for every rER~~~. Thus, if C is the zero measure on G,

then

f sin<r,Tv>G(dv) = 0

for every rER11
~~. The linearity of the regression now follows from equa-

• tion (*) and Corollary 1.3.3.

The condition in Theorem 1.3.7 is too complicated for easy verifica-

tion; so we shall present in the following proposition a simpler sufficient

condition that provides nontrivial examples in which the regression is

linear . To simplify the presentation and to make geometric visualization

possible, we shall treat the case a = 2, i.c., the regression E(~0 I . ’ 1,~ ,).

Therefore, consider jointly SoS random variables ) ‘ ~~~~~‘~~~7 
with

1 < a < 2 and spectral measure F on the unit sphere S = {(x0,x1,x2).R
’:

x
~
+x
~
+x
~ 

= 1}. Geometrically , we regard S as being separated into two

hemispheres S~ and S by the plane {x0=O} and obtain from the spectral
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measure F two new measures F1 
and F2 on the plane {x 0 = 0} by “collapsing”

these two h~nispheres . Specifically , let S~ = Sn1x0�0, x0/l},

S~ = Sn~x0<O ,x0/- 1}, and Li {xcR 2 : x~+x~�1J , and define 1: S -
~~ U by

T(x 0, x1,x2) (x 1,x 2) .  Then , for all Borel subsets B of U ,

r1(B) = F(S~nT ’B)

and 1
F2(B) = F(SnT B)

define two measures on U which we notice place zero mass on the point

(0,0). Finally, we introduce two functions f1 and f2 on U representing

the function x0 
- a1x1 

- a
~
x2 on S~ and 5 , respectively :

= ~ l - x~-x~ - a1x 1 
- a2x 2

= - i~Ii~~ ~~~~~~~~~ 
- a1x1 

- a2x 2

and we define a f.s.m. on U by

v(dx) = f1(x)F1(dx) 
+ f2(x)F2(dx)

1.3.8 PROPOSITION . If v is the zero measure on U, then E (~0 I~~1,~ 2) 
=

a1~ 1 + a 2~2 a.s.

Proof: The result follows from Corollary 1.3.3 and the following equality :

5 (r1x1+r2x2)~~
1(x0-a1x1-a2x.,)F(cLx)

= 1~ 1x1 ,x 2) 0 
1(TX)F(dX) 

+ I (r1x1
+r2x2)~~~f2

(Tx)r(dx)

S S
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= I (r1x1+r2x2)°~~f1(x)F1(dx) + f (r1x1+:~2x2)°~~f2(x)F2(dx)

= f (r1x1+r 2x2)0
~~v(dx ) . U

If F1 and F2 are absolutely continuous with respect to a measure p

(e.g., p = F
1 

+ l’z) with Radon-Nikodym derivatives g1 and g2, respectively,

then the condition of Proposition 1.3.6 can be expressed as

0 = v(B) = f [ f 1(x) g1(x) + f2(x)g2(x)]p(dx)B
for all Borel subsets B of U , or equivalently ,

(*) fj f 1(x) g1(x) + f2(x)g2(x)~p(dx) 0
U

1.3.9 Example. Given real numbers a1 and a2, define a Borel subset B

of LI by

B = f (x 1,x 2)~ U: ~~1-x~ -x~ - a1x1-a 2x 2 > 0 and

1 2 2
- V 1-x 1-x 2 

- a1x1 
- a2x2 > 0}

and two functions g1 and g2 on U by

1
I 

— if x€B ,

g1(x) = ~ Vl-x~ -x~ - a1x1 
- a2x 2

0 otherwise

1• 
. I _ _ _ _  

if x E B ,

g 2 (x) = ~ ~~l-x ~ -x~ + a1x1 + a2x 2

0 otherwise

hi 
_ _ _ _ _ _ _ _ _ _  

Li
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and let p be any a - f i n i t e  measure on U with respect to which g1 and g2
are integrable. Then (*) is satisfied , and cc~isequent1y E(

~0 IF ~1,~ 2) =

a1L 1 + a2~ 2 a.s.

There appears to be little more that can be said about the form of

the regression function using the techniques of this section , primari ly

because higher moments of SoS variables do not exist (see the next

section) . One quite restricted kind of problem which can be solved

simply is to obtain necessary and sufficient conditions for

E(F~1E 2 l~ 3,~4) 
= a.s. when the appropriate moments exist.

1.3.10 PROPOSITION. Let be joint ly SoS ra ndom variables

with I < a < 2 and spectra l measure F such that 
~l and 

~2 
are independent

and and are independent. Assume tha t 0 and ~ 0 , and f o r

each i ,jd l ,2,3,4} let ~~ be the covariation of 
~~ 

with E~~. Then

E( ~ 1~ 2 j~~3,~ 4) = a.s .  i f  and only i f  either c13c24 = c33c44 and

c14 = C23 
= 0 or else c14c23 

= c33c44 and c13=c 24 = 0.

We remark that our analysis shows it impossible to have a first-

order term such as c~3 in the above regression .

Proof: In a maimer similar to the argument in Theorem 1.3.1 , it follows

that 
~~~~~~~~~ ~~~~~~~~~~~~ 

a.s. if and only if

2 2
~ 4 ( r 1, r 2 , r3, r4) 

= 
~ 4(0,0,r3,r4)

~r ~r 2 ~r 33r 4r1 r2 0

lo r all (r 3, r4 ) ,where ~ is the joint c . f .  of 
~~~~~~~~~~~ 

Obtaining 
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‘ 
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the partial derivatives , this condition becomes

a-i
• (r 3r4) c33c44

cr1 a-I 2(a-1)
= (r 3r4j c13c24 + (r3r4) c14c23 + 1r 3 1

2(a-l)
+ 1r 41 c14c24

for all (r 3, r4) .  Taking alternately (r 3, r4) = (1,0) and (r3,r4) 
=

• (0 ,1) we get c13c23 = 0 = c14c24 and our condition then becomes

c33c44 = c13c24 + c14c23

But one of the terms on the right-hand side must be zero since c13c23 
= 0

= c14c24, and both terms cannot be zero since ~ 0 and ~ 0 11111)1)

c ~~0 and c ~~~ U

1.3.11. Example. To illustrate Proposition 1.3.10 consider a measure F

which concentrates its mass as follows: mass 2(0/2)-i is placed on the

four points (0,2 h/ 2 ,2~~~2,0), (0,2
h12,~2~~~

2,0), (2 h/2,0,0,2 h/2),

(2 V2,0,0,~2
1/2); and mass ~a/2 is placed on the two points

((~)l/2 o (1)l/2 o) (0,(~)
h/2,0,(~)~~

2) . Then c13 = c24 = c33 = c44 = 2

and c14 = c23 
= 0, and therefore E(

~1~2R3~4) ~~~ 
a.s. (Notice that

neither and E
,4 

nor 
~2 

and are independent.)

We conclude this section with a discussion of regression in the

infinite-dimensional case. The reading of these remarks might be deferred

since some of the concepts which arise here are dealt with extensively

in Chapter II.

• Suppose that (n,
~
.
~~

t€T} is a SoS family of random variables with

• 1 < a < 2, and consider the regression of n on {~t ,tET}. There exists

_

~~~~~~~~~~~ ] _~~~~~~~~~~~~ _~~~~~~~~ _ _  
_ _ _  ______ _ _  _ _
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a countable subset T of I such that

E ( n I ~ t , tcT) = E ( n I ~~~, tu ’I~~
) -

If we order the points in T~ and let Tn be the set containing the first

n points , then

E(nRt,tET ) 
= lim E (r ft~ t , t T )

r~c~
by [Doob 1953 , p. 319], where the convergence is in L~ffl)~ 1 < p < a.

If E(fl[~t~
tET

~
) € Ln for every n , where Ln is the linear space of

{
~ t , tET~

}, then E(n I~ t , tET~,) will  belong to the l inear space of

• {
~t,

t€T
~

} and consequently the regression E(n I~t
.tcT) wi ll be linear.

We have seen two cases where the regressions E(n
~~t,

tcTn) are always

linear: when the process is (1) a-sub -Gaussian (Example 1.3.2) and

(2) independent (Corollary 1.3.6) . Case (2) is interesting when

is a SoS process with independent increments, T = [0 ,=~) ,  and

= 0. For then a(~~ ‘
~~~~~~~

‘
~~~~ ~ 

= o(~~ ~~~~~~ ~~~~~~ 
‘
~~~~~~~~~

‘
~~~~~ ~~~~• 1 n 1 2 I n n-i

O � t 1�.. . ~~~ and therefore

E(nI~t ‘~~~~ 
. ‘~~~~ 

) = a1~~ + a2 (~~ ~~~ 
)+ . . .+a~ (~~ ~~ 

) a.s.
1 n 1 2 1  n n-i

In both cases (1) and (2) we have expressions for the regression coeff ic-

ients a
3 
and can therefore write E(n

~~t,
t€T) as the limit of a sequence

of f ini te  linear combinations of elements in {
~ t , tET }. We shall fur ther

investigate case (2) in Section 3 of the following chapter .

— -~~~~~~~~~
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4. Moments.

It is known that if E~ is an SoS random variable and p > 0, then

E I .~I~ 
< if and only if 0 < p < a. We consider here the question of

determining the values of positive constants p~,.. . ,p~ such that

p1 p

I 
( *)  E ( j ~ 11 • . .  

~~~~~~ 

n) <

when 
~~~~~ 

are jointly SoS random variables. Clearly if they are

independent the necessary and sufficient condition is 0 < p1 
< a,

i = 1, . . .  ,n. If n = 2 and and are dependent, we show that (*)

is equivalent to 0 < p1+p2 
< a (Corollary 1.4.5). For general n the

necessary and sufficient condition on the pt’s is the same,

• 0 < p 1
+...+pn < a

provided the SoS distribution in R~ satisfies a condition which we shall

call n-fold dependence (Theorem 1.4.4).

Jointly SoS random var iables 
~~~~~~~~~ 

,
~~~~ 

with spectral measure ~

are cal led n-fold  dependent if

F {x S: x 1. . . X  ~ 0) > 0 -

This condition will often be satisfied and in fact fails to hold only

when F is supported by a rather particular region of S having (n-l)-

dimensional Lebesgue measure zero. rt is clear from Theorem 1.2.1 that

2-fold dependence is equivalent to dependence, hut that for n � 3,

n-fold dependence is stronger than dependence (
~~~

. - ., non-independence).

In Lemma 1.4.3 we prove an interesting characterization of n-fold

dependence .

We shall begin with a result that gives a condition for the existence

_ _  --- ~~~ . . --,• - • • •-. ----
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of moments in terms of the c . f . ,  which is assumed only to be real-valued

and not necessarily SoS. This theorem extends a special case of Theorem

2 of [Wolfe 1973] to a multivariate distribution and is proved by like-

wise extending the method of Wolfe ’s proof.

1.4.1 THEOREM. Let 
~~~~
,. . . ,~~~~ be rand om var iables with real-valu ed ~~~~

c.f. 4 and suppose that 0 < 

~k < 2 fo r  k l ,. . .,n . Then E (I~ 1 I .. R~.j 
n)

<
~~~~~ if and only if

C fl
f ... f {2~~~ [l - 

~ 
4(.  . .0 . . .  , 2z k , .  . .0 . . .) ]

0 0 k=l

+ 2n 2  ~
j <k

c1E f O , l}

(*)
- . . 

~~+( ~~~1)fl 4(2z1,(-l)’2z2,... ~(~l)
fl
~
12zn)}

~~~~~ ~C~1_ ~~ € (0,l}

dz1dz 2 ... dz~
].+p1 l+p2 

].+p <

zl Z
2 

. . . Z~

f o r  san e c > 0.

Proof: We shall use the following elementary trigonometric identity :

2n- l . 2 . 2 - 22 sin z1 sin z2.. .sin z

= 2f l 1[1 - COS 2z~ ] + 2n-2 ~ cos(2z. + (-l) ’2zk)k=l j<k
c1€ {O ,1}

.7 C C
- 2~

1
~~ ~ cos(2z. +(-l) 12z. +(-l) 22z1.,)

i<j<k
c1,c 2 E {0 ,l}

+~~~. +(~1)n cos (2z1+(-l) ’2z 2+ . . .+(~l) n l 2Z~)
c1,...

_ _  ~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • ~~~~~~~~~~~~~~~~~~~~~~ •
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Thus if p is the measure induced on Rn by (
~~~~~

,... ,E ~ ) ,  then the integral

(*) can be written as

22n1 1

C~~~~~~~~

1

C

1 
sin2r1z1sin2r2z2 . .  .sin2rnzndp (r1,. . - ,rn)

R~
i

dz dz .. . dz1 2 n
l+p1 l+p2 

1
~~nz1 z2 ...z

22n-1 1 r1 I
P1

Ir2~~
2... r I

Pn
f
ft1 lC ... nksin 2y1...s~~2y

l+p1 l+p dp (r1,.. . ,r~ )

Sufficiency. If the condition of the theorem holds , then

Ir 1t �l r
h

l�l
l l 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

dy1. - .dy~
1~~l ‘~~n

� 

r~ I i ~ ir
h

i �1
kl~~~~~ 

j r I ~~ f ...~~~~~~sin 2y1...sin 2y

—1+p
l 

l2Pfl 
dp (r1,... ,r~)

yl .. - Yfl
< c o , so that

p1 p
I r1 1 ... Ir~,I 

ndp(r 1 ,r~) < ~~

Rn 



~T ~~~~~~~~~~~~~~~~~ 
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Necessity.  The integral (*) is less than or equal to

2-1 p 2 dy1 2 dy
2 n ffr1j ... 1r ~ f ~‘dp (r1,.. ., rn)f sin y1 1+~1 - - -~~ sin 

~nR y1
p1 p

which is finite if f 1r 11 1 i~n I 
ndp(r1 .. ,rn) < °~~. [1

If the condition of the theorem holds and if we let c increase to

infinity, then the integral (*) converges to

2 1  ~l P 2 dy1 2 dy
2 n- E(I~ 1I - . ~~ 

ri
)1 sin y1 . . .  f sin y~

yl yn
p1 p

and we therefore get an expression for E(I~1 I . . .  ~~ 
n) in terms of the

c.f.  
~~~

.

For the analysis that follows we shall transform the rectangular

coordinate system used in (*) to another coordinate system in Rn that is

the familiar spherical coordinate system if n = 3. The details of this

transformation are indicated in the following lemma.

1.4.2 LEMMA . Condition (‘i) of Theoran 1.4.1 can be expressed as

ir/2 ir/2~~ , n
I - - . 1  j {2n-1 - 2n 1  

~ 4 ( . . . 0 .. ., 2rr k (0 ) , . .  . 0 . . . )
0 0 0  k=l

+ 2n 2  ~ 4 ( . . . 0.. .,2rr.(O),...0...,(-1) ’2rrk(P),. ..0...)j <k
c1€ {0 ,l}

C 1~~-~~~ ~
Cn_ l  d0,1} c

(- 1) n l 2rrn ( e ) )}

de de ...do
dr 1 2 n-i

n-i ~~~ p.r U [(sin 0k~ 
j=l 3(cos 0k~

— --- — ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . —
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• 
for sane c > 0, where 0 = - - ~0~~~~) and

n-l n- i
r1(0) ~ sin 0k’ r2(o) 

= cos 01 U sin
k=l k=2

n-i
r (0) cos 0 11 sin 0 , ..  . ,r (o ) = cos e 

-

Proof: Transform the region of integration of integral (*) as follows:

z1 
= rr1( O) ,  z2 = rr 2(B) ,. .., z

~ 
= rr

~
(0). The Jacobian of this trans-

formation is r 
~~
sin

~~
’ok, and the lemma follows by straightforward

substitution. U

The next lemma characterizes n-fold dependence and has an interesting

interpretation for bivariate SaS distributions.

1.4.3 LEMMA. Let F be a finite symmetric measure on the Bore l suho~ts

of the unit sphere S in Rn and suppose tha t 0 < a < 2. Then

F{xES: x1. . .X ~ 0) > 0 if and only if

2
~~

l

k~l 
flxkrk l F(dx) - 2n-2 

j~k 
~lxjrj+(~l)

lxkrk
l0r(dx)

+ 2
n-3 

~ fIx .r.÷~~fl~~x.r.+~~l~~
2xkrk F d x

i<j<k 5 ‘ 1 3 J

(**) 
C1,C2E{O,l}

C
.+(-l)~~~ f f r  x1+(- 1) 1r x

~~~~~ ~~
Cn l E

+ .. .+(~l)
n
~~rnxn

t0F(dx)

> 0

for a11 ‘~~~oeo 
~J 

ri~
...,rn such that rl .. .r n ~ 0.

Proof: Similarly to what has been done before, define the a-finite meas-

• ure p on (0 ,x~) by p (ds ) = 
~~~~~~~~~ 

def ine 0: (0,- )  x S  -
~ R~ by

_ _  
~~~~~~~~ ~___~~

_
~~~•_ _ _1_•_ ____ ~_ _  

-~~~~~~~ --
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fJ(s,x) = SX , and let G = (pxF) 0 1. Multiplying the left-hand side

of inequality (**) by I~(1-cos 
s)p(ds), we obtain

0

I {2~~1 ~ [1-cos rkvkl - 2n-2 
~ 

[l-cos(r.v.+(-l) ’rkvk)l

Rn k=l j<k
c1dO ,1}

• + 2n 3  
~ [l-cos (r.v . +(-1) 1r .v . +(-l ) 2rkvk )]

i<j<k 1 1 3 3
c1,c2 € {0 , l}

+~ ..+(- l)~~~ [l-cos(r 1v1+( -l) 1r 2v2~~ 
- .+(4)ru rnv)I}G(dV)

c1,. - . ~Cn l E{O)l}

= 2n l
1 {l - cos rkvk 

+ cos r.v. cos rkvk
R” k=]. j<k

- cos r.v. cos r~v~ cos rkvk

+ - .÷ ( - l)~~ fl cos rkvk }G(dv)

n- 1
= 2 1 (l-cos r1v1)(l-cos r2v2). - .(1-cos rnv )G(dv)

- 
- R’~

= 2
n-1

1 ~ 
(1-cos r1sx1).. .(1-cos rnsxn)p(ds)F(dx)

n-l
= 2 f j (1-cos r

1sx1) .  - .(l-cos r
~
sx )p(ds)F(d.x)

{x~S:x 1. - .x~�O} 0 
n

for all choices of r1,. .. ,rn such that r1. 
. .rn ~ 0. 

-

•

It is then clear that (**) implies that F(xES: x1.. .x
~ ~ 

0) > 0.

Conversely, for every xcS such that x1.. .x~ ~ 0 and every rER
T
~ such that



‘
~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

f(1-cos r1sx1).. .(l-cos r~sx )p(ds) > 0

so that F{xES: x1.. .x~ ~ 0) > 0 clearly implies (**) . U

It should be pointed out that the condition of Lemma 1.4.3 is

not changed if we require inequal ity (**) to hold for only one choice

of r1,. .. ,rn such that r1.. .rn ~ 0, and it is also clear that the direc-

tion of inequality (**) is never reversed.

If we take n = 2 and r1 = r 2 1, then Lemma 1.4.3 yields the

• following : F~xcS: x1x2 ~ 0} 0 if and only if

I (x1+x2f°r(dx) + I (x 1-x 2j°r(dx)

= 2 f 1X 1 1°F(dX) + 2 

S 

-

If and 
~2 

are jointly S~S random variables with 1 < ~ < 2 and spectral

measure F , this latter condition may be written in terms of a norm intro-

duced in the next chapter:

+ II ~l~~2 i I = 2 II ~~I I 0 + 2 I j~ 2 II°

which is analogous ~o the parallelogram law for an inner product space.

Indeed , if  a = 2 the equation is precisely the parallelogram law stated

for two zero mean b iv~riate normal random variables , but if 1 < a < 2

we get that the “parallelogram law” holds for two hivariate SaS random

vari ables i f and only if they are independent (Theorem 1.2 .1) .

We now apply Theorem 1.4.1 to SoS random variables . 

-~~~~~~~~ - - -~~~ --- -- . •--• -- -- ~~~~ -~~~~~~~ -.-~~~~~-, 
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1.4.4 THEOREM. Let 
~~~~ 

- ,E~ be n-fold dependent lointly SoS random

variables with spectral measure F and 0 < a < 2. Then for positiv.
p p

numbers p1,... ,p we hav e E( I~1j 1 
~~ 

n)< if and only ~f

< a.

Proof: Combining Theorem 1.4.1 and Lemma 1.4.2 and using the particular
p1 p

form of the c.f. 4, we have that E(I~1I n 
< if and only if

-it , ~rr/2 € fl

I / ••~f f {2 I~~l - 2~~
l 
~ exp[-2°r°f Irk(O)xkl F(dx)J

0 0 0  k=l S
‘

I c
+ 2n 2  ~ exp[-2°r°J r.(e)x.+(-l) rk(0)xkl F(dx)j+ ...

j<k S ~
c1€{0,l}

-

• 

- 

+( ~~~ 1) fl exp[~2
arof r1(0)xl+(-l)

’r2(0)x2 + . . .

c1,... ~c~~1E f O ~l} S

+(~1)~~~
lr ( 0)x 0F(dx)]}

• dr d~1 do 2 . . .  dØ~~1
k

r 1 fl 1 11  

- 
l+
~1 1 p~

• ii [(sin Ok) 
-‘ -‘ (cos Ok)• k=l

for some C > 0. It is apparent from inspection of the development of this

integral in Theorem 1.4.1 that the only region where convergence to a

finite limit is in question is for points where r is small. At r = 0

the factor of the integrand in braces reduces to

21~~
1 

- 2f l 1 (fl ) + 2n-2(n)2 - 7n_ 3 (n)22+ . + ( _ 1) n2n1~~

2~~~[i - (~) 
+ (~) 

- (~) 
÷ ..

= 
.~
n_ 1

(1 1)n = 0 -

_ _  - -•- . ••
~~
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We now differentiate this factor in braces to assess the rate of

convergence to zero as r -
~ 0. The resulting partial derivat ive with

• respect to r is

a2ara~
l
[~2

n
~
l 
~ flr k(0)xk l

aF(dx)4(.. .O...,2rrk(O),...O...)
k=l S

+ 2~~
2 

~ {fIr. (0)x.÷(~fl hrk
(O)x

kl
0F(dx)

• j<k ~~ 3 ~
c1~{0,l}

— x ~~~~~~~~~~~~~~~~ ..0...,(-1) ‘Zrr k(O),...O. ..)}

{fIr 1(s)x1+(-l)
1r2(o)x2

+...
c1~~-. ~%4E{O4} S

• +(~1)~~~
lr (Q)x j0F(dx)4(2rr1(O) , (-1) 

12r r ( O) • , (~l) n-12~~~(0)) }}.

From the common factor rO l  in this derivative it is evident that the

factor of the integrand in braces is of order 0(r°) as r -- 0. But it

is possible that the convergence to zero with r is even faster if the

other factor in the derivative converges to zero as r -
~

- 0. However, at

r = 0 this other factor in brackets is

~2n l  
~ flr k

(O)xkl°F (dx ) + 2n-2 
~ IIr.(O)x.+ (-fl 1rk(O )xk (~~

(dx )
k=1 S j<k S

c1E{0,l)

- . - 
~~~

( _ 1 )
fl f r1 (O)x 1+ (-l)

1r~ (O)x~+ ...
c1,. .. ,c 1c{0,i}S

+ ( ~~1) 1
~~~ r ( O ) x l

0F ( d x )

which is nonzero for all 0 = (e i , . .  - ,On 1)c ( 0 ,~ -) ’~
4 by Lemma 1.4.3 since 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~ - - — .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~_  . •~~~~~~~~~~~~~~~~ •.
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the functional values rk (O) are nonzero for such 0 (Lemma 1.4 .2 ) .

It is clear from Fubini ’s theorem that if the integral is finite

then the factor of the integrand in braces is integrable over (0,c) with
l+p

l
+ ..

respect to the measure dr/r n
• Since this factor of the inte-

grand is of order 0(r°) and of no smaller order as r -
~ 0, if the integral

is finite then p1
+~ .+p~ < a.

The sufficiency of the condition p1+. - .+p~ < a is clear, since

p1 p
E( [~~1 j I~r~I

p1 
________

p1
+. 

~~ ~~~~ pl
+” .~Pfl ~l~

•
� [E(~~1 f 

fl
) }  . . - [E(f ~~~j )]

by Holder’s inequality. U

The following corollary was conjectured by Holger Rootzén and is

an iiiinediate consequence c~ Theorem 1.4.4 for the case n = 2 and Theorem

1.2.1.

1.4.5 COROLL’?Y. Let 
~l 

and 
~2 be dependent ,iointlz~ S~S random ~~~~~~~~~~

p1 p.,
0 < a < 2, and let p1 > 0 and p2 > 0 be .q i~’ri ~. Then (1E 1 1 1E 2 1 ~) 

<

if and only if

In Theorem 1.4.1 and the succeeding remark we have seen how to corn-

pute the absolute moments of monomiais in 
~~~~~

,. . - ,ç1 when their joint c.f.

4~ is real-valued . We shall conclude this section with an expression for
p1 p2E [( F~1) ~~~ ~ 

in terms of q when the corresponding absolute moment is

finite . Such moments will be of interest in the next chapter for random

variables and 
~2 having finite absolute moments of order p, 1 < p < 2 ,

~

-- -

~

• — — • —

~
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with p1 
= 1 and p2 

= p-i .

• 1.4.6 THEOREM . Let 
~l 

~~~~~ be random variables with real-valur~! ~~~~~~~~~~~~

p1 p2
4 such tha t E ( I ~ 1j I~ 2 I ) < ~~, where 0 < p1 

< 2 and 0 < p2 ~ 2,

and when 0 2 let c(p) = 2f~sin
3y —~4~ . Then

E I (E 1) ~~~ ~

= 
32c(p1)c(p 2) L f [94(z1,-z2) 

- 9~(z1,z2)

+ 4( 3z1,-3z2) 
- 4(3z1,3z2) 

- 34(z1,-3z2)

• dz1 dz
+34(z1,3z2) 

- 34(3z1,-z2) 
+ 34(3z1,z2

) ]  1
~~1 

2 
-

(z r) (Z
2

)

Proof: As in Theorem 1.4.1 the proof is based on an elementary trig-

onometr ic identity :

.3 .332 sin z sin z2

= 9 cos(z1-z 2) - 9 cos(z1+z2) + cos(3z~1-3z2) 
- cos(3z1+3z,)

- 3 cos(z1-3z2) + 3 cos(z 1+3z2) - 3 cos (3z~ -z,) + 3 cos(3z1÷z2).

If ~ is the measure induced on R
2 by 

~~1’~ 2~’ 
then

I f  [94(z1,-z 2) 
- 94(z1,z2) 

+ ~(3z1,-3z2) 
- : ( 32 i , 3 2 :)

d: 1 dz ,
- 34(z 1,-3z2) + 34(z1,3z2) 

- 3~(3z1,-z 2) + 3. :(3 : i , :,) ]  1+
~~1(:i ) (:~)

C C dz dz
= 32f I f sin3r1z1 sin3r,z2dp (r1,r2) l~p1 

2

R2 (z1) (z,)

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
• •~~~~~~~ • • •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• C C I dz1 dz
= 32 f f f sin r1z1 sin~r2z2 1+

~1 
1+
~2 

dp (r1,r2)
-

• R 
C C (z1) (z 2)

- 

~1 
p2 Jr 1k Jr 2Jc 

~ 
dy1 dy2= 32 f(r1) (r 2) - - r

1 sin 
~
‘1 sin 

~2 1+
~1 

1+
~2 

dp (r1,r2).
R r

1
C 

2
C (y1) (y2)

Letting C ~~~~~~~~ we get the stated expression for E[(~1)~~(~2)
2J . ~

I

I
Li ~~~~~~~~~~~~~~~~~~~

• 
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I I . A FUNCTION SPACE APPROACH TO SoS PROCESSES

•1
• It is a customary method in the study of second order stochastic

processes to establish an isomorphism between (a subspace of) the linear

space of a process and a Hilbert space of functions and to translate

problems formulated in terms of the process into problems in the more

familiar function space. In this chapter we investigate an analogous
T 

approach to the study of p-th order processes by seeking an appropriate

Banach space of functions that is isometric to (a subspace of) the linear

• space of a p-th order process (Section 2). ~Then applied to a SoS process

with independent increments (Section 3), our results yield the stochastic

integral defined in [Schilder 1970], and when applied to an “absolutely

conti nuous” process (Section 5), they yield a stochastic integral of

more specific form which can be also regarded as a sample path integral.

We conclude the chapter by exploring the possibility of using the statis-

tical properties of the output process to identify a linear system with

a known SoS input (Section 7).

1. The linear space of a process.

After defining the linear space of a p-th order process and the linear

space of a SoS process, we show that the duals of both spaces have a kind

of Ries: representation (Theorem 2.1.5) and that the two spaces coincide

in the case of a S~S process (Proposition 2.1 .2). These results are

essential to our later development of stochastic integrals with respect to

SoS processes.

I

_ _ _  -- •~~~~~~~~~~ - . • --- -- --—--- -~~~ . — - -~~~~~~~—-- • .- - — - -.- -~~-•- —----— • -—------
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Let 
~ 

={
~t

,t€T} be a stochastic process with underlying probability

space (U ,F,P) . If 
~t

EL
~
(c2) for all t~T where 0 < p < ~~~ , then we call ~

a p-th order process. Unless otherwise specified , throughout this

chapter we make the restrictions 1 < p < ° for p-th order processes and

1 < a < 2 for SoS processes .

Let £(~) be the space of all finite linear combinations of elements

of [
~~

,tcT}. If ~ is a p-th order process, then define a norm on i(~)

by

Ru =

for all Q(~) .  If ~ is a SoS process, then for every ~€.Q(~) it follows
ir~from result 1.1.2 that there exists some b > 0 such that E(e ) =

-b IrlO
e for all r€R. Then

I u ~ I u = b~~°

def ines a norm on 9~(~ ) ([Schilder 1970, Corollary 2.1]). It is a con-

• sequence of the continuity theorem for characteristic functions that

convergence with respect to this norm is equivalent to convergence in

probability . For a p-th order or a SoS process ~ we let L(~) denote

the completion of 9~(~ ) with respect to its norm . If ~ is SoS, we shall

show that L( 1 ) is a SoS family by using characterization 1.1.3 of the

SoS c .f .  due to Kuelbs .

2.1.1 ; - ~~~~r ; ~~~’ V. If P~ is a SoS process , t1~~n L( ~ ) is a ;~w-~iil y cj’

j~~ nt7~i SoS rando m variables.

Proo f: For each j = l ,...,k let ~(3)
} be a Cauchy sequence in 2 ( F ~) .

I
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Then {ç~3)
} is Cauchy in probab ili ty and hence converges in probability

to some real-valued random variable ~~~~ It follows that the sequence

of random vectors ~~~~~~~~~~~~~~~~~~~~~~~~~~ converges in probability to

(~ (l)~~~~~~(k) ) For each n let An be a homogeneous negative-definite

function of order ci on Rk such that exp {-A~ (y) } is the joint c.f . of

(~~
(l) ~ (k) ) By the continuity theorem for c.f.’s,

A~ (y) -
~ A°( y )

for all y€ R k , where exp {-A°(y) } is the joint c .f .  of 
~~~~~~~~~~~~~~~~~~~~~~~~

It is easy to verify that A is a homogeneous negative-definite function

of order a which is continuous on Rk , and the result follows from 1.1.3.
fl

Clearly we may regard a SoS process ~ as a p-th order process where

1 � p < a, and in fact, an application of Theorem 2 of [Wo lfe 19731 shows

that the two norms on L(~) are equivalent.

2.1.2 PROPOSITIOtI . r~ ~ is a SoS random ~ar~c~J~le ~~~~
a a

- u r ru= e , then

(E~c~~)~~ ’ = c(p,a ) IRuI

?~‘hsr 1 1 < p < a and

- 

~~-~~~-l 1/
2p-l 1 s ° (l-e~~)dsl

; .  c(p,a)= -~~ 0 —_____

• Cl)

a f v T
~ sin v dv

- 0 -.

This proposition shows that for a SoS process ~~~, L(~ ) is the corn-

ple tion of 9.(~~) with respect to either norm .

~~~~~~~~~~~ -•—~~~~~~~~- •~~~~~ - ---
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Proof: By Theorem 2 of [Wolfe 1973],

J~ r~~~l [l~4(2r ) ] dr
(*) ERI~ 

= 
0

2f v~~
1sin2v dv

0

Now

Ir~~~~ l-4 2r)]dr = fr ~~~~(l - e °1 2r1°)dr
0 0

p
= ~ Ii ~ l I~ f S ~ (1~e

S)ds
0

Substituting back into (*) , we get the stated result. U

If M is a Banach space of p-th order random variables, then for

each ~~M we define a continuous linear functional A~ on M by

= E[ n (~ )~~ ’J

for all r1cM .

If M is a Banach space of SoS random variables, then for each çcM we

define a functional A~ : M-’~R by

Aj n) =

for all ~€M . The linearity of Ac in this case follows from Corollar ’

1.3.4 and the linear ity of condi tiona l expectations. For the continuity

of A note that

= I f  xi (x 2)°*q,c (dx)
~
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a-l

~ Ix l u
orn , c (dx)] [~ lx 2 I

0rfl,c(th]~~ 
= I m u  I I RI u

0
~

by Holder’s inequality. Thus A~ is a continuous linear functional on

L ( ~ ) with u tA c t L(~ ) * 
= I ~

We now show that the cont inuous linear functionals thus defined on L (~)

represent the dual space L (~)*. Although no reference for this result

is known to us , its proof is analogous to the argument used for the

Riesz representation for continuous linear functionals on a Hilbert space .

2.1.4 LEMMA. [Singer 1970, Corollary 3.5 and Theorem 1.11] . If M is a

closed linear subspace of L(~) and fl1EL(~) 
- M, then there exists a

unique ~2€M such that 1n 1-n 2 1 I = inft n1-nI I. Moreover, A~~~~ (n) = 0

for every flEM .

2.1.5 THEOREM. Let ~ be either an cz-th order process or a SoS process.

If A is a continuous linear functional on L(~ ), then there exists a

unique cE L ( ~ ) such tha t A = A
c 

(and hence II A II L(~)* 
= uku l )

Proof: Consider M = fflE L(~ ): A (~) = 0}, a subspace of L(~). If

M = L( ~ ) ,  take c = 0. Otherwise, choose ~1cL(~) 
- M , let be the best

approximation to in M , define = , and take
I n 1 11 2 1

= [A(rj3) ]°
~~ n3

. For every flEL (~) write 

A()~~ c

IA(n3fl IA (n3fl
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Note that n - 
A(ri) çEM . Thu.s

IA(n 3) I
a
~~

A (ii) = A A(~)

IA(n 3) I J
bY Lemma 2.1.4. Therefore

A
c(n) 

= 
A(n) A

c
(c) = 

A(n) t i c ! ~ = A(n) -

IA(n 3)i
°1 IA( n 3) I c u

The uniqueness of ~ follows from Holder’s inequality, since A = Ac c0
implies that

A
c ~I = A

c({l~~[) = I i c l l ° ’  = I I c 0 I ! °~~ .

We now obtain some auxiliary results which will be useful in the

development of the stochastic integral .

2.1.6 PROPOSITION. Let 
~~n’=1 

be a sequence in L( ~ ) such that

{An(cn)};1 converges fo r  every n € L ( ~ ) .  Then {c n } converges ~.‘e~ k1~i to

some

Proof: For every n let Q~E L ( ~ )** be defined by

=

for all  ~~~~€ L(~ )* . By [Rudin 1973, Theorem 2.8], Theorem 2. 1. 5, and our

hypothesis, we can define another element Q of L(c)** by

I -~ Q(~*) = 
~~~~~~ ~~~~~
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for all ~*EL (~ )* . Since L(~) is reflexive, it follows that {c n }

converges weakly to c, where c corresponds to Q under the isomorphism

between L (~) and L (~)**. U

In the development which follows we apply a result found in [Cudia

1964] to show that the map c I _>A
c 
from L(~ ) onto L(~ )* is continuous

with respect to the norm topologies (Proposition 2.1.7 and Theorem

2.1.10). This result is used to obtain sufficient conditions for a SoS

process to have weak right limits (Proposition 2.1.11).

2.1.7 PROPOSITION . For every fEL~ (Y ,T ,~) 
= L~ (v) , 1 < p < ~~~ , let

Af(g) = I g( f )~~
1dv

Y

for all geL~(v) define a continuous linear functional on L~ (v) . Then the

map L~ (v) -~ L~ (v)* defined by f F-~Af is continuous with respect to the

norm topo logies of L~ (v) and

Proof: We can easily check that the function

- (y) P 1~

is hounded on R2 - fx=y} by c = 2 2w ; so

- (y)P1 1 < c x ~yf
P l

for all (x ,y )E R 2 . The result then follows from the following inequality :

II A f~
Ag tI *( )  

= I f  m~~
1 

- (g) P l I P l dv) P

~ j  c~~~ f~g~Pdv) 
p 

= c ll f ~g Il ~~~y) - U
Y p

• --•--~~~~~~~~~~~~~~~~~ .—-- -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Of course this result applies to the map c I— > A~ from L~ ObF~P)

to L~ (c2~F~P)* where

A
c
(
~
) = E [n ( c)~~

1]

but we shall also need the norm continuity of the map c —> A
c 

when

~ is a SoS process, and

= 
~~ 
Xi(X2)~~

lrn,c
(d.x)

for all ~€L(~). In [Cudia 19641 the continuity of such maps is related

to properties of the norm, and by applying the development there together

with Proposition 2.1.2 we shall obtain the continuity of c j—> A
c 
for c

- • belonging to a SoS family such as L (~ ) .

Let X be a Banach space, let LI = {x~X: I lx i i  � l}, let C =

{xEX: I l x ii = l}, and let C~ = {ffX* : I If i i  = 1}. For any XEC let E
~

be the set of elements f€C* such that {y: f(y)  = r} is a hyperplane of

support of U at x for some r > 0. Then the set is called the spherical

image of x. We say that the norm on X is Fréchet differentiable if for

all x€C the limit

lim II x + r y Ii - Hx i L
r

exists and the convergence is un i form as y varies in C.

2 . 1 . 8  LEMMA. [Cudia 1964 , Corollary 4.12]. The ~~~ i-~’: ~ : X is ?rc~~:-::

diff erent iable  i f ’ and onl y i f  the sp her ical image reap E icfi; icd on C is

n 7L~ -~’a7?o’d and continuous from the norm topo 7cq .~ on C into the nc~r~

topology on C~ .

Notice that the set-valued function E in the lemma is taken to be 

~~~~~~ --— - - -  • -- - 
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a mapping into C* when the image is a singleton set. We shall apply the

result when X = M , a space of jointly SoS random variables , and begin by

• • examining the spherical image map in this setting.

2.1. 9 PROPOSITION. If i~1 is a linear space or a-t~ or~~r random ‘ariaU~e.?

or jointly SoS random variables , then = A
c fo

r all c€M , I c i I = 1.

Proof: Let U = (HEM: il n i l  � l} and recall that il A c !I M* 
= t i c I i 0

~ = 1.

Given any ecU ,

Ac (n) � iA c
(n) i II c I I °~~l I n i l = I l n i l  s I

with equality implying that c = n by Holder’s inequality. Therefore,

A
c
(n) < 1 for ~~U , n c~ and hence

{n~M: Aç (n) = 1}

is a hyperplane of support of U at ~~~.

2.1.10 THEOREM. If M ~z 7~ n~?qr space of jointly SoS random ;~‘ar ia5 ~ sj -- ,

then the “~°r ~ i—> ‘\~~ :~~‘ ~T~T H •~~~~~ t~~~ M * ~o continuous with respect to ~~c

norm to~

Proof: If we regard M a; :1 subspace of L~(c2~F~P) for some p such that

I < p ~ t , then Proposition s 2.1. ’ and 2.1.9 together with Lemma 2 . 1 . 8

imply that the 1.
i*~

) norm on M is Fréchet differentiable. It is therefore

clear from Proposition 2.1.2 that the norm I -  I on M s a t i sf ying

l l n H = -1og [E(e 111 )~ is Fréchet differentiable , and thus the map c —> •\ -

from C into C~ is norm continuous, again by Lemma 2.1.8 and Proposition

_  - _ _ _ _  _
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We complete the proof by showing that the map c j—> Ac from M into

• M* is also norm continuous. Indeed, if ~ ~ 0 in M , then

Ii A ~
s\ I I

~ c~

= u I~c I I ~~~IA c - A cn + ( I I c I I 0~ - i I c n iI °~~)A cnI H c i I  I i c n l !j i I c ~I [

~ i I c I I °~~I~A c - A c~ 
+ 

~
i I c I i 0 1

~
I i c n II 0

~~ LA cnI I t c h JI c n i J  ~ h I c fl h I I M~

• -
~~ 0 as n -

~ ~ ; and if -
~~ 0 in M , then -

I IA I I  = I I c~I 1
a 1 

0 as n ~~~ . Uc~

Under the conditions of Theorem 2.1.10 it can in fact be shown that

the map c —> A
c 

is uniformly continuous , but we shall have no use for

this stronger result.

We conclude this section by obtaining suff icient condi tions for a SoS

process to have weak right limits (assumption (al) of Section 2). This

proposition will be used in Section 3 to define ffd~ when ~ is SoS with

independent increments.

2. 1. 11 PROPOSITION . Suppose that ~ = {~~, a t h} is a SoS p r e~~-.~’o

‘~~~~~i 1 < ci < 2. Let 
~~~~~

, = 0 f o r  some t ’ in order that we may direct ~~~ i’

z t ~ ( ’~ t i ( ’n toward the elements, rather than the increments, of the proce ss.

the :‘ol1- owi~~ twe conditions imp ly tha t f o r  each c cL ( ~ ) ,  the ri g ht

Ym’~ F r (t+O) exis ts at every tE[a ,b), where F
c
(t) = Ac (

~t )
~

- -  - - - - -~~~~- .- ~~~~~~~ - -~~~~~ . • • .• .-5~~•~~ •-~~ 
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(c ii)  F or every s€[a,b) there exists  an > 0 and an

such that I I~~ I I � M whenever 5 < t ~ S + C

(c ’.2) For every c€ ~ (~) ,  F
c 

is of bounded variation on T.

Notice that condition (cii) is necessary for the existence of the right

l imits F
c
(t+O) and that conditions (ol) and (ci2) together are apparently

weaker than assuming that ~ is of weak bounded variation .

Proof: Fix ccL( ~ ) and let {c n } c Q ( ~ ) be such that cn c. By (ci2) ,
A
c (Y 

is a function of bounded variation on [a,b} for each n; so
n

D~ (t) lim A
c ~~t+E ~ exists for all tc [a,b). For fixed sE [a,b) , apply

C+0 n m

(ol) to get c~ > 0 and < such that j I � whenever s — t < s + c .

We shall use Theorem 2.1.10 to show that ~Aç
} is uniformly convergent on

s < t ~ s + E } .  Indeed , let c > 0 be given and choose N such that

n > N implies II A
~~

A
c i I L(~)* < F ~ Then for every t~sjs,s+c5} and n - N ,

S 

l A (
~t
) - A (

~t
) I I IA 

- Aç I I L(~)*I ~t ’ I <

and hence the desired uniform convergence. Now by a standard result for a

uniformly convergent sequence of functions,

u r n  A
c(~ 

) = lim u r n  A~ 
~~~

‘
S~~~ C ~ 

= him
c+0 

~~ 
£m ’l

~
O n-~~ ‘n m n-~o~

exists , and thus the right limit F
c
(s+O) exists. H

_ _ _  • --- —
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2. The integral 

~f f( t)d~~ -

We begin this section by defining the stochastic integral f f(t)d~~
T

for an appropriate class of (deterministic) “functions” f and obtain ,

under certain (smoothness) conditions, an integral representation for the

el~nents of L( F~) . cAir approach is motivated by [Huang 197 5] where the

case ci = 2 is treated.

Let ~ = {E
~t , tcT} be either an ci-th order or a SoS process with

T = [a,b]. For each ccL(~) define the real-valued function F
c 

on T by

F
c

(t) = A
~
(
~t
) for all t~T. We shall begin with two assumptions, (al)

• and (a2), on~~~.

(al) For every c€L (~) ,  assume that the right limit Fç(t+0) exists

for all tE [a ,b) .

In other words , lirn A (
~~ + 

) exists for every ccL(~) ,  so that the
C 4-0 c t Cn

sequence 
~~~~~~~~ 

} converges weakly in L( F~) by Proposition 2.1.6 and we

denote its limit by +0. Hence Fç(t+O) 
= Ac (

~t+o ) . Let 
~b+o be equa l

to 
~b 

and let

I = {c€L( ~) :  c = 
~~ 
ak(~~ +

~~~~

-

~~~~~ ~~ where n�l , akER , and

a=t <t < ...<t =b0 1  n

(a2) For every cEl , assume that F
c
(t) is of bounded variation on T.

Let S be the linear space of all step funct ions on I of the form

f ( t )  = 

~~=1f kx (t k l, tk ] For each such f define ffd 5~ to be

~k= 1~k (
~tk+o

~~tk 
., f)). Define a norm on S in terms of a Lebesgue-Stieltjes

integral by
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Il f il si 
f( t)dF ffd~(t) 

= 

~~1~k ~ 
X ( t k l , tk ]

(t ffd~~
t)

= 

k~l
k1 tk+ 0 t k l +O 

= Affd~ (ffd~) 
= I ffd~H -

Let A be the completion of S with respect to this norm.

• Every element f of A0 can be represented as f = {f~}~ a Cauchy seq-

uence in S. It follows that {ff~d~} is a Cauchy sequence in L(~) ,  and we

will denote its limit by ffd~. Then the map A0 
-* L(~) defined by

f —> ffd~ is an isometry from A0 onto a closed subspace of L(
~
). If

• we assume that 
~~~~~

, = 0 for sane t’ET and that the process is weakly con-

tinuous from the right , then this isometry will be onto L(~) .

Suppose now that the process ~ is of weak hounded v~ ’iation ( see

[Shachtinan 1970J); i.e., we assume that F~ (t) is of bounded variation on

I for all c~L(~). This condition is clearly stronger than (al) and

(a2) ,  since functions of bounded variation have left and right limits at

all points. Let S’ be the space of all bounded measurable functions

f: T -
~ R for which there exists some n~L(~) such that the Lebesgue-

Stieltjes integral f f(t)dF (t) equals A (ri) for every c€L( ~). Since
-
~ 

c
the dua l separates points on L(~) ,  we see by Theorem 2.1.5 that f

uniquely determines n and we denote the latter by ffd~. It is immediate

that S’ is a linear space containing S and that the definition of

ffd~ on S’ extends our previous definition of ffd~ on S. As before , de-

- 
fine a norm on 5’ by

f f ( t)dF ffd~
(t) = AJfdF (ffd~) 

= IffddI°

and let A ’ be the complet ion of S’ with respect to this norm . Then

4 
. - -- . —~~~~~~~~ - — -- - - -~~~~~~~~~-- ---~~~~~~~“.-
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A c A’ and as done above we can def ine an isometry from A’ onto a closed
ci ci a

subspace of L(~ ) . Our next result shows that S is str ict l y contained in

s’ .

2.2.1 PROPOSITION. Let ~ = {
~~

,a�t�b } be an a-th order or a SoS ~i~~oess

of weah bounded vcrp iat ion. Then all  continuou s func t i ons  ~n [a ,b] ; len :

to S’ .

Proof: If f is a function on T and ii is a partition of [a,b] defined

by a = t0<tl<~~~
<tm 

= b , let fr(t) = 

~k=l
f(tk (tk l ~tk] 

where t~
is an arbitrary point in [tk l ,tk], and A (rr) 

= max (tk-tk l ) .  If f
lcksm

is a continuous function and {ii ~~~~} is a sequence of partitions of [a ,b]

with A
~~n

) + 0, then f ~S’ for every n andSu
n

f f(t)dF (t) = u r n  ff (t)dF (t) = lim Ar (ff d~)
T n-,o’T n n-~= n

for all c~ L(~) .  Letting n be the weak limit of {f  fr d
~
} in L(~)

(Proposition 2.1.6), we sec that f f ( t)dF r (t) = Ar (fl) for all ç~L(~)
T

and hence f€S’.

Although we have failed to resolve whether it is possible that

~ A’ when ~ is of weak bounded variation , we now show that A~ =

when ~ is of strong bounded variation, which is defined in the usual

way :

For every t~ [a ,b} define

V
~
(t) = SUp I I~ c~ II

a=s0<. - - <Sm t k=l Sk k- i

where the supremum is taken over al l f inite par titions of [a,t]. If

- 

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - - - •- 
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V~ (b) < ~~~ , then the stochastic process ~ is said to be of strong bounded

variation (see [Br~zis 1973, p. 141]). It is easily seen that strong

- 
bounded variation implies weak bounded variation.

2.2.2 PROPOSITION . If ~ is of strong bounded variation, then A0 
= A’ .

Proof: For every c€ L ( ~) define the total variation function IF c i by

IF 1 (t) = sup 
~~ 

IF~(s~) - F
c
(5k~1)ia=s0<. . - <s =t k=l

and note that for t1 < t2,

• IF J (t2) 
- IF c I(ti) � II c II 0~ [V~(t2) - V~(t1)] -

Given any f€S ’ let be a sequence of step functions converging to

f in L1(T ,a~,,dV~). Then

f~~ JJ ° = f [f(t) - fnCt)1~~f( f ~f )d (t)n 5 1 1

fit) - ffl(t)IdIF f( f f )d~ I(t)

I hf (~~n
)
~~I 0 

1 lf(t~~~(t) IdV~ (t)

= II n II ’
~If(t n(t)I~~

Ct)

• Therefore

IV~nH ~~ IIf~t) 
-

5’ T

and the right -hand side converges to zero as n = . It follows that

S ~ SI , so that A0 = A~.

I f additional conditions are placed on the process , it can be shown

that other classes of functions belong to the function space A0. For



—
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instance, if the process t~ is weakly cont inuous , i.e. ,  if F
ç (t) is

a continuous function on [a,b] for all ccL (~) ,  then S’ contains all

bounded functions that are cont inuous when restricted to a subset

containing all but countably many points of [a,b].



3. The integral f f(t)d~~ when ~ is S~S~ ,ith independent increments.

In this section we show that when ~ is ~i S~S process with independent

increments, the function space •~~~. is an L ~;~~ce ([Schilder 1970, Theorem

3.1]) and, if M is the subspace of L(~) i so me tr i c  to , we relate the

dual elements of M to dual elements of the L • ;p~icc (Proposition 2.5.1).

As a corollary , we ident ify a separating fani i lv of cont inuous linear func-

tionals on M (Corollary 2.3.2).

Suppose that ~ = f~~,a-t-h } is a S,tS process , 1 < •
~~. < 2, with indepen-

dent increments and such that , 0. By I5errii~a 3.2 of [Schilder 19701 ,

— - — - - -

~t 2 ~~ 
— 

t 2 ’ ’  t 1 ’

if a ~ t1 s t2 ~ b and 
thcrcterc 1:- an i ncrea~in ,~ function on [a,b}.

Notice that condition (J) of Proposition 2.1.11 is sat isfied since

I I~~I I I cb l I for all tc[a ,hJ .

To check that condition (~&~~ holds , ~~ns -idcr c~c ( ~ ) and

a = t  < t - ...< t = h . Wec ~~~cLa~ 1v c h o o s e a = s - ~ S0 1 n - 0 1  rn

such that {tk}~~O
c
~
sj~~_O and 7’~ 1 a~V. - ; . j. ~crite for

- 1 j-1 -

~~~ 
, 1 

~
- j ~ m , and le t  ~1 = ~~~~~ .

~~~~~~~~~~~~
. App lying

j j-l - 1 - ni -~

Corollary 1.2.3, we , et t hat

AH \ . ) = f \.(x~)
1
~~~\ ym

- 0 
~2 

•~ 0 - ’ -
~

L

= x i C • -~ Lix )

~0 r i -

= (SI . )!l  \
J o

where 1 � j0 - m. ~~ht  t.

~~~~~~~~~~~~~ 

-•

~~~~~

:

~~~~~~

-

~~~~

- - - -

~~~~~

- -- 

~~~~~~~

- — -—

~~~~

-- - — —-

~~~~

-

~~~~
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n m

~ IA ~~ ~ 
)I ~ ~~ IAj~5 

-

~~~~~~ 
)I

k=l ~ k k-i j=l j j-l

= 
~ IA~(X.)I 

= ~~ I a .I
0
~~I I x . lI 0 � M~

j=l ~ j=l J J

and the bounded variation of F~(t) follows.

Because these conditions are satisfied, we know that the SciS process

{
~~+0,

a�t�b} is well-defined by Proposition 2.1.11, and we see, after a

um ment’s reflection, that it has independent increments. It is clear

then that conditions (al) and (a2) are satisfied; so the integral ffd~

is defined as in the previous section.

Let f and g be two step functions in 5:

n n
f(t)  

~~ 
f
~x -

~~ ~ 
(t) and g(t)  = 

~ ~ ~S j=l ~ j - l ’  ii k=l ( k-l’ k1

where f and g are defined over the same intervals with no loss of generality .

Let G(t) be the increasing function I I- ~+~I 1° on T. Writing X~ for

~~~ ~~~~~~~~~ +~~ 
, 1 < j < n, and recalling the notation of the previous

j  j-l

section, we find

ff(t)dF
fgdF,

(t) = 

~~~~~~~~~~~ 
= ~~~~~~~~~~~~~~~~~~~~~~~~~

= ~~~~~~~~~~~~~~~~~~~~~~~~~

= ~ ~~~~~~~~~~~~
j=1 3 J

= 
I ~ f.(g.)°’~ t ~ 1

(t)dC,(t)
j=1 3 ~

= f f(g)°1 dG (t) -

_  
~~~~~~~~~ -~~~~~~~~ - --5 ~~~--~~~~~~~~~~~~~~~~~~~~ -- ---- - - - -~~~~~~~~~~~~~~~~~~~ - . - -

-- - -
~~~~~~~~~~--
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In particular, 1f~~° f f(t)~~~f~~(t) = ftf (t)IadG(t). We conclude

that A = L0(dG), since the step functions are dense in both spaces.

In s~.minary, if ~ is a SoS process with independent increments and

1 < ci < 2, then we have shown tha t the integral f fd ~ is defined and

yields an isometry between a closed su~s~ acc- of L( E )  and an L space.

We obtain therefore the result found in [Schilder 1971), Theoren- ~.1}

without any continuity assumptions on the process. ~childer also oh-

tains an analogous result for the case 0 < -
~~ 

< 1.

~~~ definit ion of ffd~ in th is  section ea. -~~iy  c.~t cnd ~ to the case

where the stochastic process E is inde xed by an in *in it e  interval 1.

If ~e let S be the set of all step functions that are zero outside a —

contact subinterval , then we can ~ -fia: the norm on S in the same way

~is be’~ort , -i ~~~ the completion of S with respect to this norm will he

~~~~~~~~~~

It wi ll be u~eful t have an expression for certain continuous linear

t i ~ ict ~nj i s  eva lua t e d  at point s of the form j~d•s~ -

2 . 3 .1 :1:. :.. :, - = Jfd~ ~~ ; f~i , f -
~~ -~~~~ g oe~~~:

1. d ; ) . : . . - -

= f f ( g )  ~~ dG
- T

Proof: l e t  { I -

~~~~~~~ 

and {g } be sequence s of ~tep f unctions in 1. ~dG)n fl- n fl -

such that f~ -. I and g
~ 

g. Then jf1~
d5 , -

~ n and fg11
d ç, and therefore

= l~~ A . ( f f  j :)

= 

i~~~S~~ r
1
i~~ 

s
~~~~~~~

fmd )

- - ~~~~- ~~~~~~~~~~~ - _—--~~~~~~~~~ - - - --~~~~~~~~~~~~~~~ - .—- -  - - -~~~~~~ -—~~~~~~~~~~~~~~ -~~~~~~~~ --—-~~~~~- -5 - --5 -~~~
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= lim lim f fm n )
°1 c

~m-~oD n-~ T

= lim f f (g)0~ldG
m-’-°° T

= 
f 
f(g)ci~l~~ ,

T

by Theorem 2.1.10. P

Let ~ = {
~~

,t
~
T} be as abcve with I = [a,c=) and 

~a+0 
= 0. Then if

M is the closed subspace of L(~) which is isometric to L0(dG), we get

from Proposition 2.3.1 that the set of continuous linear functionals

4 {A :t€ T } separates points on M .
~t+0

2.3.2 COROLLARY . If ~EM and A (
~~~ ) 

= 0 f o r  a l l  tET, then ~ = 0 in M.
~t+0

Proof: Let f~L (dG) be such that ~ = f f(t)d~~. Then
I

A (~~~) 
= 0 for all t~T

~t+0

~
-=> f f(s)c lG(s) = 0 for all t~T
(a, t]

a.e. [dG]

=>~~~= 0 m M .  U

If ~ is weakly continuous from the right, then L (T,S~,dG) is

isometric to L(~) and Corollary 2.3.2 implies that the set of contin-

uous linear functionals (A : tET} separates points on L( E~) .

As a further application of the developments in this section,

we reexamine a regression problem introduced in Chapter 1.

S j



2.3.3 ~~ ~~~~~~ .v - U5. ,a<t~h~ ic a ~~~~~~ 7~ SoS ~~ ‘ ( P~7~~ ~~~~~~~~~~~~~~

1 < o < 2, such ~~~~~ r i -  ,a - t h }  ~ ~~~~~

and~~la+0 O. :‘ !‘ - 5~~ B !- . -l~. !~-. t B o f LI ,b1 -f ’ r:c

X(1 )I = 
I > B (t

~~~t

= 

~X(B)X(}~ 
-

Then p isa r.s.m. w~~~- 1 ~s -~~~~~~~ Z~-- ~~~~~~~ ‘t ~ ~-c.~:-c~; ~~~~-- - -

measure 
~~~~~~~~ 

Mo re ot ’cr , the 3euoi —:- ’ . ~:r’ - “- 

~~~~~~~~~~ 
;~~ 

-

L (dF) , where F ( t )  = -~~~ I 
a

- -

E(flIf
~
,a<t�b) = 5 ~J_LL~ t ) J r ~ u . s .

H~x -

Proof: To see that is countablu additive , let B = U B 1, where the

Bk ’s are disjoint measurable subsets of (a , hJ . Then us ing Theorem 2.1.10

and the techniques of this section , ~ce have that

~ (B) = C - = u r n  C

L 

n\ nX( B) ,;fl \B  )fl ‘ ---j= i5 ~- i

= him 
~ ~~~~~ 

= 
~~ ~S \ ( b )  -

n—~ i=1 i i= 1 -

It is clear that dp~~ = dF and a << I ct 1’ be a countable subset

of (a ,hJ such that

E (nl
~ t ,a- t- h) = E(n

~~t
,tET

~
) -

W i thout loss of genera I i  tv , ~e may a ~s~u :c  tha t  the points in 1’ are dense

in (a , h J  , order them , and let T~ be the set c on t a in i  fl1) th e first n points -.

We know from the discuss ion in  Chapt cr I and Propos it ; on 2. 1 . 2 that 

S-- S 
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E(nI~ t ,tET
~
) -

~~ 
E(nI

~ t,tET
~
)

in L(~). If Tn = {t1,. ~~~~ where t1<t2<~ ~<t~~ then o(~t,tET~) 
=

o(~ ,~~~ 
-

~~~ , . . ., ~~~ 
-

~~~ 
) and ~Ietting t0 = a)tl t2 ti n n-i —

n p ((t, ,,t1J )
C # T 1 — V  ~~~~~ ~~ -

‘~~~~ ~~~~~~~~~~~~~~~~~~ 
— L — 

( 1t  t 1~ ~k=1HXX~ 5 k-i’ k’~ k k- i

n p (( t ,t 1)

~X k- i k
= I ~~ ~~~~~~ ~ 

-i~ x~ ~k=1 ~~~~~~~~~~~~ k-i’ k~’ 
‘- k-i’ k~

-

- 
by Corollary 1.3.6. Therefore by the isometry between L (dF) and the

subspac~- M of L(~), the latter “integrands” fonu a Cauchy sequence in

L0(dF) which converges to dP~x
/dP

~~ 
in L

~
(d.F) and a.e. [dF ] ([Hewitt

and Stromberg l965J). Hence

E(flI~~
,a<t�b) = f 

~~~ 
(t)d

~t 
a.s. P

_ _  —--—- -—- - -- - - - - ---
~~~~~~~~~~~~

— - ---5-
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4. Spectral representation of a SoS process.

In this section we state an interesting result due to Kueihs (2.4.1)

and der ive Schilder ’s characterization of independence (Theorem 2.4.2)

- 
from the characterization in Theor~ii 1.2.1. A simple result on estima-

p tion of SoS random variables is also included (Proposition 2.4.3).

In [Schilder 1970] the integral ffd -,, where is a S~S process with

independent increments, was used to obtain a - spectral representation”

for a finite set of jointly S -~S variables . Kucib s has extended this

result to processes indexed by an infinite set .

Two stochastic processes {:~ ,tCT } and 
~ t ,tsT} having the same index

set are called indist inguish aLle if their finite dimensional distribut ions

are the same .

• 2.4.1 [Kueibs 1973] Le t. {[ ~~, t T ~ Lc e S~S -c - a. ’ tJ ut

in probabilit y t c  T an interv a~ : J  1 <: ~ < 2. T~ t~. ‘ ca~ .- t. -‘  S~S
- 

process 
~~~ 

-1/2 � A s 1/2) y-;~~~~i 5~ :u 
~~~) (~~~~~ 5 

- : . - - z :‘~-~~
- -

of functions ff
~
,tcT} ~n L ([-  ~~, ~],dF), -

~~ - z - ~ F(\) ~~~~ I I ’~’ -
~~

-
~~~~~~

that {f ft (A )d
~~

,t1T} and 
~~t,

t€T} -
~~r - - y  -

~~ia a c ;,

Let us consider two joint ly  SL S random variables and 
~~~~ 

1 < a — 2.

By 2.4.1 these variables have the same joint distribution as two random

variables f f 1 (A)d~ (A ) and 
5 

f ,(A)d~(~ ), where ( -
~~, -1/2 -- 1/2) is a

SaS process with independent increments , F(’-,) = ‘~, and

f~~L ([-1/2 , 1/2},dF) for i = 1 ,2. The following condition for indepen-

dence of and 
~2 

~~ S expressod in term s ol f1 and f2.

-- -5 -- - - - - - -— — -— - -
I -
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2.4.2 THEOREM. [Schilder 1970] The randc,n vw’iahles 5

and 
5 

f2(X) I
~A w’e independen t if and only if f1f2 = 0 a.e. [dF].

Proof: The random vector (5 fi (A )d c x ,f f2(A)dt A) has c.f.

i[r iffi (X)d
~~
÷r2ff2(A)d~~

}
E e = exp{-fjr1f1(A)÷r 2f2(X )~°dF(A) }

Let f(A) = [f~ (A) + f~ (A ) J 1”2 , and define

f (A) f (X)
f X  if f(X) > 0~ f A  if f(A ) > 0

g1(X) 
= g2~~ 

=

1 if f(X)=0 , 0 if f(A )= 0.

Let S = {(x 1,x2):x~ + x~ = 1), define T: [-1/2,1/2] -~ S by 1(X)

and define a finite measure v on [-1/2 ,1/2] by ‘ (dA)

f ci(X ) dF (A ) Then

I Ir 1f1(X)+r 2f2(X)I°dF(x) = I I<r ,T(X)>I°v(dX)

= I I<r ,x>I0vT~~(dx) -

S

By Theorem 1.2.1 we have independence if and only if

o = \)T~~{xES: x1x2~0} = v{X [-l/2 ,l/2]: g1 (A )g 2(X )~ 0}

= v{A€[-l/2,1/2]: f1(A)f 2(A )~0}

= 
5 fa(A)~fl~(X) -

{A [-l/2,l/2]:f1(A )f 2 (A )~ O}

~ 

Since f ( A )  > 0 whenever f1( A )f 2(A ) ~ 0, the result follows . U

Notice in th is  theorem that the index set [- ~- ,~ -] plays no essen-

t i a l  role and could be any interval .

-5--- -~~~~~~~~~ - - - --~~~~~~~~~-— ~~~~~~~ S
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In Theorem 5.2 of [Schilder 1970] a necessary and sufficient condi-

tion is given for the best estimate of a SoS random variable by a linear

combination from a finite set of S S random var iables . In the following

result we solve an estimation problem in an infinite-dimensional space

of random variables and provide an explicit expression for the estimator.

2.4.3 PROPOSITTON . Lc- z {~~ ,tcT} i . - S~S ‘ - . - . .  ‘~~~~~ -: nc’-

increments , 1 <  r~ < 2, 
~t+O 

= ~~i t i , :cd F(t) = 
~I I ~ ~~

I be a subi5nt.ers’al s~
’ T ~~ ! -: ~~ - I -  1 (r ) ~~~~~~~ 7:. ~~~

- 
~~~~~~~~~

incr~ nents of ~~~~~ ~ - i  - 5 -a :‘ . : - ~~- -~
- . :~Z/ a ! .  ‘~~ t -  i~ ‘~~~~-

- 1.

= f f ( t)d~~, ~~~~~ f€ L (dF) , t. - z - -
- - a :~~~- u ~ 

-
~~ . t:~ ~ ~~u L(I )

g iven by

= 
5 

f(t)d .~ -

I

Proof: If I’  = i-I , then for an fixed ç€L(1) we can write ç = 
5 

g(t)dsT~
T

L where gcL (dF) and g(t) = 0 if t - 1’ . Observe that

- = 
5 
f(t)d~I,

and therefore r~ - ~ and ~ ar e independent by Theorem 2. 4.  2. Thu s

A~~~R) I 
x1(x2)°~~F~~0~~(dx) 

= 0, so tha t A .  annihilates L(I).

Using a standard argument ,

I = A~~~(~ -r~ = A Jn)

= A~~~ (n -~ ) s j~~~~i - r ~~j 
L - l

whence
I n-~- I

for all (~(L(I). H 

~~~~~~~~~~ --5-  -~~~~~~~~~
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5. The integral 
I 
f(t)

~t
v(dt) -

T

The integral 
5 

f ( t)d~~ discussed in Section 2 requires two assum-
- T

ptions on the process F~ and consequently is somewhat restricted in its

applicability. Even when these assumptions hold (such as when E is

ScxS with independent increments), there is no direct relation between

the sample paths of ~ and the realizations of 
5 

f ( t)d
~t
. In contrast,

T
the integral 

5 
f(t) E

~t
v(dt) which is defined and discussed in this sec-

-S I
tion requires less stringent assumptions on ~ and for a large class of

functions f can be interpreted as a sample path integral (Theorem 2. 5.5).

Throughout this section we shall consider ~ to be a general p-th

order process , p > l,and q to be such that lip + 1/q = 1. A stochastic

process {
~t,

tET} on a probability space (Q ,F,P) is called measurable

if (t,w) I—> ~(t,w) is a product measurable map from TxO into R. We shall

investigate conditions for the existence of measurable p-th order pro-

cesses in Chapter III. The following argument is taken from [Cambanis

and Masry 1971] where it is applied to a second order process.

2.5.1 PROPOSITION . Let F~ 
= {

~t,
tET} L’e a n?casurable, p -rh order s-r:ccsa

with index set I an arbitrany interval of the real line, and let cx > p

given. Then there exists a finite measure v on (T ,B.~) such tha t v

equivalent to Lobes gue measure on T and

I I I~~I °v(d t) <~~~~~.
I

Proof: Choose g1 L1 (T,R~,Leb) such that g1 > 0 a.e. [Leb] on T, and

def ine g2 on I by

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1 if 0 s R~~ I I
g (t)2 

- -  
I 

- i f l <  I~ L0 t

-St

Then the measure x on (T,
~T
) defined by v(dt) = g 1( t )g 2 (t )dt is  clearl y

equivalent to Lebesgue measure on F and

— I Il~~~~~~~~H

°
v ( d t )  = 5  I ~IL~~1(t)g~ (t)dt g1 (t)dt <~~~~ - P

T T T
-

~ Under the conditions of Proposition 2.5.1 ,

- -5 .
’- Ef Ic~

(
~)S~

v dt) = f l I~~I (dt) <~~~~
T T

since p < a and v is a finite measure; so the sample paths ~~~~~~i )  belong

to L~ (T~&~,~x) with probability one, by the measurability of ~ and Fuhini’s

theorem. We can therefore define a stochastic process n = {rt
~
,teT} by

(u) 
= 

~ ~~(w)~~~s) a.s.
(-
~
,t) ’1’

for each tcT and observe tha t r t L
~~

(cl) . si nce

EIn~ I~ 
= E l 5 ~~(w)~ (dt) ~ s ~~~~~~~~~~~~~~~~~~~~~~ I ’~~t~(-~ ,t)nT T

2 . 5 .2  LEMMA . IJ ’ t 1 < t2, t~~’r.

t 2 t _)

I f  ~~(w)~ (ds) I ~ f R5 1 Iv(ds) -

• 
tl

_ 
tl

t~
Proof: 1.et ~ (w) = f 

~~~
(w)v(ds) and observe that

ti 
-

t 2 t
I I I  I ” \ (5 ~~()(1 )) = j  

2~ (~5 )v (ds )
‘ t i

- t it~
- - I H l~~~ I 1 l~~ J 

1\- (ds) . U
ti 

-

2.5. r~~/ -p ~~~ ’ J,  ‘/. i: Y’ -aa 13 P~~’ -’ ‘ .

, ,/1r ‘
S ot f - ~n.

- - —

~

-- - -  — - -~~~~~~ - - -5~~~—— —- - — --- -- --—- - - --~~~--
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Proof: For every partition t0 < t~< . - .<t~ of I and every ~~L(~ ) ,

n tk
~ II n ~ ~~ H ~ ~ I H~ 

Ilv (ds)
k=l k k- l k l  tk l

� f ~~~~~v(ds) <~~~~~~ . U
I

It follows that the stochastic integral f f ( t )d f l~ 
is defined for

fcA (~) as in Section 2 and that A~ (n) = A~(n) (Proposition 2.2.2). We

now def ine A~(~) ~ A~,(n) and for every fEA~(~)

5 
f( t)~~v(dt) 5 

f(t)dn~I T

We shall see that the “stochastic integral” I 
f(t)

~t~
(dt) can be

S 
I

expressed as a sample path integral for a large class of functions in

A (~~
) (Lema 2.5.4) and that sample path integrals of the form 

5 
f(t)

~t
(w)v(dt )p T

belong to L(ri) for all f€Lq (T
~
BT~

V) (Theorem 2.5.5). In addition , these

sample path integrals are dense in L(~) when ~ is a weakly continuous

process (Theorem 2.5.6).

We begin our investigation of A~(~) by recalling the space of func-

tions S’ which generates A~)(n): S’ is the space of all bounded measurable

functions f:I -
~ R for which there exists some fl 0E L ( f l )  such that the

Lebesgue-Stieltjes integral 
5 
f(t)dF (t) equals A~ (~ 0) for all ~cL(~).T

Since the stochastic process n is suppressed in our notation F~ (t ) here ,
-

- we emphasize that F~(t) = Ajnt) .

2.5.4 LEfl~ 4.  For every f€S’ the sample pa th intagr a 7.  f f ( t)
~t
(w)v (dt)

T
equal s 

5 
f( t)

~t
v (dt) wit h probability one.

T 

--- “,~~~~. ---5- -5 -5~~~~~
- -- -

~~~~~
-. -. --- ----5- ----.- - S - - -

~~~~
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Proof: It is clear that the sample path integral exists since f is a

bounded function and 
~~
(w)EL

~
(v) a.s. For any g i ven r~ L~ (H1 there exists

some ~1~L(’) such that A. = on L(n) by Theorem 2.1.5. Note that for

t i 
S

t2f (IF (t) = A (n -n ) = ~\ ( r ~ -r i )
t ~1 

1
~l 2 1 - - 2 11

5 , 
= A~ [ I ~t (/

~
Jv (dt ) ] = I ~)‘- (dt)

- - t1 t 1
Thus

~r~1 f
~
t)

~ tv(dt) - 5 f ( t )
~~t

(w ) ’
~

( d t ) )
T

= A ( J  f ( t )
~ t v ( d t ) )  - Ej ( ~ )~~~~f f( t)

~~
(o)v(d t)j

‘I  1’

= A (5 f( t)
~~~

(d t))  - f f ( t)E [ (
~~~~

’
~~

]
~
(dt)111 T

= 5 f(t)dF ( t )  - 5 f(t)A (-~~)v (dt)
T ~l T - -

= 5 f (t)dF (t)  - 5 f(t)dF ( t )  0 . P

I ~l ‘F

We have seen that 
~~~~~~~~~~~~~ ~- i th probabilit y one, so that for

all fEL (T,&1,,v) the sample path integral 5 
f(t)

~~
( -)v(dt) is defined a.s.q T

and is easi l y seen to belong to L1) (c2) . In fact , it belongs to L (~ ) , and

the function space ~~(E) contains Lq
(\)) in a sense wh ich we now make

PI-ecise.

2. 5.5 yp~’7 ,~p~ . t~~~( P  ~~~~~~~~~~ 
~ ‘~~ ~ I (~j) ,j ,o  , -~~ “ : :-  ~

- a 
~~~~~~~~~~~~~~~~~~ 

au - 7 - ~ . - -~~

~~~

, 

~ 
(~~~) ~~~~~~

- - -

~

-- - -5—-5  
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f f( t)
~t

(w)v (d t) 
5 

f( t)~~v(dt) a.s.I T

where the left-hand side is a sample path integral and the right-hand

side a stochastic integral.

- 

Proof: Given any g€ L (v) let 
~ 5 

g(t)~~ (w) v (dt)~ and observe thatq T

I k H ~ = A (5 g( t)~~(w)v(dt)) = 1  g(t)A (
~t
)v(dt)

T
-S 

I ~ I Lq(~) 
(iIA~~~ I~v dt)) ~~

- 
S II g II ~~(~)II c I~~~~UII~t If Pv(dt)) -

Thus we have the relationship

lI~~~~ 
g(t)~~(w)v(dt)II � ~~~~~~~~~~~~~~~~

for all gELq (v) .

Given any fC L q (V) let 
~~n~n l  be a sequence of step functions con-

verging to f in Lq (V ) and recall that fn S’ for each n. Thus the sample

path integral f f
11
(t)i t (w)v(dt) belongs to Lf t )  by Lemma 2.5.4 , and

I

I I f  [f(t)-f~~t)1~~(~)v(dt) I I  I I~~~I I~. (v) (SI 
~~~~~~~ 

I
T

(d t ) ) ~~~~~~~~ ,

T q T

which converges to zero as n =‘, so that the sample path integral

5 
f( t )

~t1w)v(dt ) belongs to L(n) .
T

Note that 
~ n~~=1 

is a Cauchv sequence in S’, since

= II f [1m ( t 1 n (t)1~t (t
~
)v (th)II

I I  
~m~~n ’ I Lq (V) 

(I l  V~l I~~~ v ( d t ))  
1/1) 

- . o

---- - --_- - -5- 
----

- - - - -—-~~~~~ - - - -  -- -- —- ---5 —- ---- 5 -~~~ -



-~ as m ,n ~ ~, and denote i ts limit in A~ (~ ) by 1. Then

Ill f(t)
~~~

(w)v(dt ) - 
5 

f (tJ~~v (dt) I
- 

T T

= urn 
I lf [f,~

1t -f
~
(tJ ]~~

(w)v(dt)I I = 0 ,
m ,n-~ F

so that

5 
f(~~ (w)~~dt) = 

5 
f ( t ) ~. v(dt) a.s.

T T

It is immediate that f determines ~ un i q u e l y ,  since if g1,g2 in

satisfy

I g1(t)~~v (dt) = 5 1(t P ~~
(
~~

v ( d t )  a . s .
T T

for I = 1,2, then

I I~ 1-
~ 2 I ‘A ( ~) 

= 
I 1 [g1(t)-g2 (t) ]~~ u(dt) I I  =

whence g1 = g2 in A~(~) .  p

Identifying f with ~ we can then consider Lq (V) as a subset of

It is straightforward to check that the process n is continuous

in p-th mean and consequently that is isometric to all of L(~).

Since S’ L L~ ( ) ,  it is clear that L(1(v) is always  dense in and

hence that Lq (VJ is isometric to a dense subset of L ( r i) . The final re-

sult in this section shows that Lq (V) is isometric to a dense subset of

L(~) when ~ is weakly continuous .

- 2. 5.b :‘J/P 1 ’E’M . :~ p~~-~- that ~ ~ ~(zl-~~ • -“-~t c~ a ~r -~ f-ha right and

tha t I = [a ,~). :‘hau ti - - :
~~~~~~

-
~~

- - 
~
‘ {f f(t)~ t (u)v (dt) : f :~s a star~

~ iu L~(~) L (~,) 
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Proof: Fix tn , and for every integer n > 1 define

~~(s) = V {(t
~
t+n ’) }X (~~~+ l )(s)

p so that

I ~~~~~~~~~~~ 5) = 1 -

I

Given any c > 0 and any ~~L~ (c2)~ use weak right continuity to choose

an N such that n � N implies that IA~(~~-~5) I < c for t < s < t + 1/n.

Then fo r n � N ,

IA c Rt 
- f ~~(s)~ 5 (w) v ( d s ) I I  = I f  ~~~~~~~~~~~~~~~~

g (s)IA (~ 
-

~~~ ) I v ( d s ) � cf g (s)v(ds) = c -

T n ç t ~ T n

Hence f g~ (s)~ 5 (w)v(ds ) converges weakly to 
~~ 

by Proposition 2.1.6

and therefore 
~~ 

belongs to the closure of {f f( t) E
~t
(
~
J)V (dt): f is a

step function) by [Rudin 1973, Theorem 3.1.2]. P

Thus when ~ is weakly continuous , every element of L(~) can be ex-

pressed as a limit in L~ (and hence also a .s.)  of sample path integrals .

Specifically , if ~EL(~), then there exists a sequence {f~}~~~ c Lq(V)

such that

~(w) 
= him f f

~
(t)
~ t(w)v(dt) a.s.

_ _ __  ~~~~~~~~~ ~~~~~ 
_
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6. The integral I f(t)~tv(dt) when ~ is SctS with independent increments.

- When ~ is SctS with independent increments and fcLq we find the relation-

ship between the two integrals of Sections 2 and 5 (Theorem 2.6.1), and we

characteriz e the independence of 5 f i (t) E tv(d t) and f f 2(t)~~v(dt)

(Theorem 2.6.3).

Let ~ = {
~t,

tET} he a SaS process with independent increments, index

set I = [a ,co), 
~a 

= o~ weak continuity from the ri ght,and F(t) = 
1 ~~~~~ 1

The process ~ is therefore a p-th order process for any p such that

1 < p < a, and the integral 5 f(t)~ t
V (dt) is defined as in the previous

T
section. Under the conditions we have placed on ~, we know in fact by

Theorem 2 .5 .5  that integrals of the form 5 f(t)~~
v(dt), where fcL (T,&Tf,v)~q

h/p + h/q = 1, are dense in LR) . The following Fubini-type result re-

lates this integral to the one in Section 3.

2.6.1 THEOREM. If f -- Lq (T 
~
BT ,v), then

5 f(s)~~~(ds) = 
5 rf(s)v(ds)d~ , -

T T u

Proof: We begin by showing that the right-hand integral exists , l . a . ,  that

rf(s)V(dS)cLa(dfl . Since v is a finite measure (Proposition 2.5.1’), we

can choose M so large that v[M ,~ ) < 1 . Thus

Ill f(s ) v (ds) I
adF(u)

� 1 ( 11 f ( s) ~v(d s) )~~~~(f v(ds) )~~~ dF(u)
T T  u

a ct/p -- - = 1 1 1 1 1 1 ( )J [V [U ~~ )J dI- (u)

M
-
- II f~ ~ 

~ 
[5 [v[u,’~) j

Ct/P J}: 1 ) + 
5 vIU ,~ )d1 (u) I

•
(1

(V  a N

- —_~~~~~~~~~ - 5 - -5-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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which is finite since

• 
f
M
[V[u ,~)] a/pdF(u) s v (R)~~~F(M) < ~~

and

V[u,~)dF(u) � f f X[U~~)
(s)v(d s)dF(u)

= I f  X (a ~ 
(u) dF(u)v(ds) ~ SI I~ I I

a (d) <~~~~~~ ,

I I  ‘ T S

by Proposition 2.5.1.

We complete the proof by showing that

• A (I f(s)~5v(ds)) = A~ (f f f(5)V(d5)d~u)~t I  t T u

for all tcT and applying the remark following Corollary 2.3.2. Indeed,

A~~ (f f c s v d s d
~~) 

= 
~~ X (a ,tI (u) 

I f (s) v (ds)dF (u)

by Proposition 2.3.1. Also,

A (f f( s)~5-v(ds))I

- 
= f f(s)A~ (~5)v(d s)
I t

= 5 f (s)  S X~~ ti (u) X( 1 (u) dF(u) ’~(ds)
T T

= 
I f(s) 

~ X (a ,t](u) x [u ,~)
(s)dF(u)v(ds)

= 

~ X (a ,t](U) ff(s)v(ds)dF(u). 1]

The following corollary is iiiu~ediate in view of Proposition 2.~ .l.

5
_ _ . 
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2.6. 2 x) H () cL,A-~’7. If f and g ba!~ouj  to Lq (T 
~
6T ,v) , then

Af f ( s) ~ çV (d s) (~ 
g( t )~~ v (d t ) )

T

= f ( f  f (s)v(ds))~~~~(f g(t)V(dt))dF(u) .

T u  U

5)~, $
I i !  f(s)~~v(ds) lI

ct 
= I I f  f(s)v (ds) I

ctdF(u)
T ~

‘ Tu

A~ another apilication of Theorem 2.6.1 we obtain necessary and suf-

f
~
cient conditions for independence of such integrals.

- _ 2. ~.3 ~ i!’i:-L’ -’-f . [ i t  F( t) ~c o~~ i ~t 7~ -‘ n -P > ’asin , and for i = 1,2 consider

f~ € L~1 IT,a1.,
v) w I to

• 13~ = fucT: f f . (t ) ~~( d t )  = 0)

and B~ = T-B~ 7’ - -n 5 f1 (t)~~
v1dt ) ~uJ 5 f,(t)

~ t
v(dt) cv’e independent ~lf

T
~ urJ o~1~ if a s- - af ~~~~~ fol/ ,wln~ t i  (a- >~ ivai~ ut) conditions hold:

- - f i  ) f1 0 - Z , E : .  fv J on ~ and fo~ t’OC~~ ucB~

I x (t)f 1 (t)v (d t ) = 0;
U B 7

(ii) 
~2 

= 0 :. C. [v] on B~ and for each uEB~ —

I x~3 (t)f2(t)v (dt) = 0 -

U I

- 
- ProoF :  If 5 fi (t)~~

v(dt) and f f (t):~ V(dt) are independent , then 
- 

-
-

T T

(*) f f~~t ) v( d t ) f  f2 (t)v(dt) = 0

- -
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a.e. [dF] by Theorem 2.4.2 (with a slight modification of the index set

of the process). Thus (*) holds for all u€I , since the integrals are

continuous functions of u and F is str ictly increasing . Also by contin-

uity of the integrals , B2 is a closed set and hence (a ,~ ) - B2 is an open

set on which çf1(t)v(dt) is zero. Therefore f1 
= 0 a.e. [v] on B~ and

consequently

I X g (t)f 1(t)V(dt) = 0
u 2

for all uEB~.

Ihe necessity of (i i) follows in a similar manner , and the converse

can be seen by reversing the arg~nnent. Li

It is possible to obtain similar conditions for independence for

slightly more general F, allowing say F to be constant on a closed subset

of (a ,co) h i t  strictly increasing elsewhere.

5- --~~~~~~-~~~~~~ --5- - -- -- - - -
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System identification.

In earlier sections it has been convenient to use A~ to denote a

continuous linear functional defin ed by A~(n) = E [n ( ç)~~~
1] on a p- th

order family and by A~(n) = C~ . on a SczS family. We shall now refer to

Aç (fl) in both cases as the covariation of n with ~ and likewise extend

the use of the symbol C~~ to the p-th order case. The covariation

function C~~ of a stochastic process ~ = {
~~

,tcT} is defined by

C~~(s,t) = C~ ~S t

and the cross covariation function C)~ of a stochastic process X = 

~
X
~
,vcV}

with ~ is def ined by

Cx 
(v ,t) C

~ 
-

v~t

Let the p-th order process ~ be the input to a linear system and let

its output X be given by

(1) X = 
~~ 
f
~

(t)d
~~

where f = v~~~’ 
v€V} c S’ , or by

(2) ~~(w) = f f
~
(t t v( d t)

where f = 

~~~~~~~~~~~~~ 
vEV} c Lq(V)~ In both cases ~ is called the (time

varying) inpulse response of the system. Our purpose is to investigate

~hat can he determined about the system from knowledge of the statistical

- ‘ 1~ ttonshi p between ~ and X , specifically from knowledge of the co-

~ j i r ~ funct ion  of ~ and either the covariation function of X or the

~ - i r i . i t  ion func t ion of X wi th ~~~ .

s~~w n  ~ ~~S with independent increments we find that the impulse

- -5
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response of the system, in both cases considered above, can be iden-

tified from the cross covariation of the output with the input process

(Propositions 2.7.3 and 2.7.5). With additional restrictions it is

also possible to determine the impulse response of system (2) from the

covariation function of the output process (Proposition 2.7.6) and from

the cross covariation of the output with a known stationary sub-Gaussian

input process (Example 2.7.1).

For a p-th order process ~ of weak bounded variation, the cross

covariation function for system (1) is given by

~~~(v,t) = A~~( ~ ~~~~~~~ ~ 
f
~

(s)d5C~~(s ,t)

and it is clear that the function ~~~(v,t), tEl, determines if and only

if the signed measures determined by C~~(•,t), tET, separate points on S’.

Similarly, for a measurable p-th order process ~, the cross covariation
function for system (2) is given by

cx~(v , t) = A~~( f f
~

(s)
~~

V (ds)) = f f
~

(s)C
~~
(s,t)v(ds)

and Cx~
(v ,t ) ,  tET , determines if and only if the functions C~~(~’ ,t), tcT ,

separate points on Lq(V)~

One situation in which system identification is possible is when the

covariation function CE~
(s ,t) of the input process is a stationary co-

variance function, an interesting circumstance which arises for certain

stationary sub-Gaussian processes. To see the form of C~~(s,t) for a

general ct-sub-Gaussian process, let

A
~~t

(ri,r2) 
= 2 2[r~R(s,s) + 2r1r2R(s ,t) + r~R(t,t)J

2

_ _
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for every s ,t€ T , where R(s , t)  is a covariance function and 1 < ~ - 2.

Then observe that

1 ~~ t(ri,r2)C~~(s,t) = 
S
~~r r1=0

r2 1

- 2 2[r1R(s,s)+r2R(s ,t)]
= 

[r~R(s,s)+2r1r2R(s ,t)+r~~(t,t)]
2 ri-O

= 2-a R(s ,t)

R(t,t) 2

- 
2 . 7 .1  EXAMPLE. Suppose that ~ is a p-th order process of weak bounded

— variation having covariation function

C~~(s,t) = cR(s ,t)

where c > 0 and R is a covariance function of the form

- 

R(s,t) = [ e
ir(t5)g (r) dr

-
~ with g (r) > 0, gEL1 (Leb). Assuming that f°°Ir~g (r)dr < =- , we obtain for

system (1) the cross covariation

Cx~
(v ,t) = j f

~
(s1 5C~~

(s,t)

- 

= j f ~(s)(cj(~ ir)e~~~t 5 ’ )g(r)dr) ds

-

‘ I = ~icjre itrg (r)(je~~~5f~(s)ds)dr

Thus knowledge of Cxc (v
~
t) for all t and of g determines f~e~~~~f~(s)ds

- - ~~~~~~
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for all r and hence 
~~~~ 

a.e. [Leb] . Assuming moreover that

Cx~
(v ,t)€L1 (or L2) as a function of t and that ~~~~~~~~~~~~ 

e 1rtCX~ (v ,t)cLl

(or L2) as a function of r, we can express the impulse response as

~~~ 
= 

2 1 r~ (r~ ( I e~~
rtCX~

(v ,t)dt)dr a.e. [Leb] .

L c(2rr) -
~~~ 

-
~~~

If we suppose instead that ~ is a measurable p-th order process with

the same covariat ion function as above, then we obtain for system (2)

the cross covariation

Cx~
(v ,t) ff~

(s)C
~~

(s ,t)v(ds)

= cf 
~~~~~~ 

eh1
~
t5)g(r)dr \)(ds)

= cf g(r)e
l
~
t
f fv(5)e

lrsV~~s~ 1r -

Thus knowledge of ~~~(v ,t) for all t and of g determines f~e
lrsfv(s)V(ds)

for all r and hence f
~
(s) a.e. [Lebi . Assuming as in the previous case

that Cx~
(v,t)eL1 (or L2) as a function of t and that 

~~~ 
f e~~~

tCX v,t)dt

EL1 (or L2) as a function of r , we can express the impulse response as

°~ irs ~~ 
.

~~(s) = 

(27T)2c[d~~~b
]( s) 

j  !~~~~ ( f  e 1rtCX~
(v ,t)dt)dr

L a.e. [Lebi .

Throughout the remainder of this section we assume that ~ is a SaS

process and use the special properties of SaS processes to obtain more

concrete results. We begin with a simple proposition relating covaria-

tions in the output space with the finite-dimensional distributions of X.

2 . 7 . 2 PROPOSTTION . Knowing Ay (X~) for all 1> L(X) and i l l  VEV is c~ H?~i’-

z l ’ s f  to knowing th~ f ini te—dimension a l dis tr i i ’ut i > ’no ~-f 
X .
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Proof: Suppose that the finite-dimensional distributions of X are known

— 
and fix Y€ L(X). Then Y = lim 

~n 
where each is a finite linear combi-

n-+~nation of {X~, v€V}. For every vEV we know the joint distribution of

X~ and Y~, and therefore ~e know

-

‘ 

Ay (X
~
) = f x1(x 2) F ~~~~~ (dx)

and thus also

him A~ (Xv) = Ay (X~)
n-*~o n

- 

by Theorem 2.1 .10.

Conversely, if Ay (X
~
) is known for all YEL (X), then for any integer

n a 1 and any v1,. . . ~v~cV we know

A 1r X  + +rX )
riX~ 

+ .. .+rnXv ‘- 1 v1 n v~
1 n

= I lr 1x1~ .. .÷rn
xn l

ctrx , ..  .,~~~~~ 

(~~~~ )

- 
S 

~n -

for all r1,. .. ,rn and hence the joint c.f. of X1,.. ~Xn [1

Now the dual of L (X) separates points on L(X) ; so each X~ is deter-

mined in L(X) by knowledge of Ay (X
~

) for all Y€ L (X) (Theorem 2. 1.5) ,

hence by the finite-dimensional distributions of X (Proposition 2.7.2).

However , L(X) in general may be strictly contained in M , the subspace

of L ( ~ ) isometric to A
~
, and the set of linear functionals {A~: Y L(X)}

may not separate points on M. In such cases the elements of the output

process need not be determined in M by the finite-dimensional distribu-

tions of X . (If (A~: Yc L(X)}does not separate points on M , then there

exists ~~M , ç ~ 0, such that A~(~) = 0 for all Y-L(X). Thus for any Xv,

- - ~~~- -- - -~~~~— - - -  — - - - 5 -~~~~~--- - -~~—-- ‘~~~~~~~~~ - - - - 5 -~~~~~~~~~~~~~~~~~~ -— -~~~~~~~~~~ - - - - - 5 ---- -~~~~~~~~
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Ay(X~~~) =

for all YEL(X), and therefore knowledge of the finite-dimensional dis-

tributions of X does not distinguish between X.~, and X~+~ in M .)

Since M and are isometric , knowing the output variable X.~ in M

is equivalent to knowing the impulse response function 
~v 

in A
~
. Hence

the finite-dimensional distributions of the output process X determine

= 

~ v’ 
vEV} if and onl y i f  the set {A~ , YcL(X) } separates points on M.

An interesting example for which the system is determined only to

- . within an equivalence class is treated in [Kanter 1973] - In that paper

Kanter considers a SaS process 
~~t,

tER} with independent increments and

I I~~~~~~ I I~~~ = t and a time-invariant system of type (1) with impulse response

f€ L (R) and output

Xv = f f(v+t)d
~tR

Then the finite-dimensional distributions of X determine f up to trans-

- - lation and multiplication by ±1.

lo see how system (1) can be determined from covariat ion functions in

the SaS case, we assume that F~ has independent increments , is right - on-

tinuous, I = [a ,c~), E~a 
= 0, and I ~~~~~ I 

= F( t). Then

C~~(s,t) 
= I X (a ,m in(s ,t)}(r)d1

~
(1
~ 

= F (min(s ,t))

Therefore by Proposition 2.3.1,

Cx~
(v ,t) = A~ ( f f

~
(s)d

~5
)

t I

= I fv(5)dF~~ 
= I fv(5)~~~~~

5
~
t)

(a ,t] T - - 
—

for every 
~v c t~~~-~’ 

with C~~(v ,t), tET , determinin g 
~~ 

if and only i f

the signed measures determined by C~~( ,t), t€T , separate points on

L (dF) . In addit ion,

_ _ _ _ _  - — ------5 — - 5—— ~~~~-- — - - - 5— - -- ~~~~~~ —‘ 5 - - — - - -  -5— - - -- - - ---- —- - --— --5-- —~~~~ -- --—
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C~~ (u ,v) = Ax~
( 

~~ ~~~~~~~ 
= j  f

~
(s) (f

~
(s) )

~~~
dF(s) ,

and consequently 
~~ 

is determined by the covariation function C~~(u,v),
a-hv€V , if and only if the functions 
~v 

veV, separate points on La (dF)
~

2.7.3 PROPOSITION. Suppose that ~ has independent increments, T = [a ,c=),

and 
~a+0 

= 0. Then each impulse response f u nction 
~~ 

is determined by

the cross covariation function C
~~

(v, t+0), tcT. Moreover, assuming

for simplicity of expression tha t F~ is weakly continuous from the right,

C~ (v ,t(n) 
) - C

~~
(v ,t

~~ 
)

f (t) him ~ k11(~)-’-1 k’~(t) a.e.
V 

~~~~~ F(t (’~
)
) 

) - F(t(n) 
)

k 
n (t)+h kn(~)

where F(t) = 1
~ t

1 
ct {J (1~1)

}
~~~ is a partition of (a ,co) into semiclosed

intervals j~”)= (t~”~, t~~~] such tha t the partitions become finer as

- n increases and

5(n) 
= 

~~~~~~~~ Leb(I~’~ ) -~ 0

as n -
~~ ~, and k~~~( t)  is the unique k such tha t tEI~~~.

Proof: The first part of the proposition is immediate from Corollary

2.3.2, and the second part follows by an exercise similar to (20.6l)(b)
- 

of [Hewitt and Stromberg 19651 .

For a discussion of the estimation of Cx~
(v ,t) , see [Kanter and

Steiger 1974]. Li

2.7.4 EXAMP LE. Suppose that ~ satisfies the conditions in Proposition

2.7.3 with dF a finite measure such that dF — Leb and

[t
2dF(t) = c < ~~ -

- -— —-5-
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Let the impulse response of system (1) be given by

1

f
~
(t) = (cos vbt)c t l

for all v � 0, where the “frequency” b > 0 is unknown. Then for each

u � 0, the ccvariation function

- 
C~~(u,v) = 

f f
~

(t)cos(vbt)dF(t) , Vv a 0

determines a.e. [Leb] and hence b. To obtain an explicit expression

for b, observe that

d2C (0,v) 
~ 2

2 
= -b2f t cos(vbt)dF(t)

dv a

and therefore 2

b2 — 1 d C ~~(0,v)

~ dv2 v=0

We next consider how system (2) can be determined from covariation

functions and therefore assume that ~ is a measurable SczS process. Then

C
~~

(v ,t) = 
I fv( 5,t)V(ds) ,

and as before C
~~

(v ,t), tET, determines if and only if the functions

C~~(,t), t€T , separate points on Lq(V)~ Assuming that ~ has independent

increments, is weakly continuous from the right, I = [a ,~), ~a

and F(t) = then

C~~ (u ,v) = 
5 ( 

~~~~~~~~~~~ 
1 fv(t~~~~t~~~~~~~~I r r

by Corollary 2.6.2, and we shall see in Example 2.7.7 that the covaria-

tion function C~~(u,v), v€V , sometimes determines

_  _  _ _ _
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2-7.5 PROPOSITION. Let ~ be SctS with independent increments, weakly

continuous from the right, T = [a ,~), ~a 
= 0, and P(t) = I 

~~~~ 
1~~

strictly increasing. Then for each fixed VEV the cross COVu ation

function C
~~

(v,t), t€I, determines 
~v 

in Lq (T~B~~V) by the relationship

d L b  d C
~ r V ,

f
~
(t) = - 

dV ]( t) x 
~~

_
-[ ~~~~~~ 1 (t) a.e. [Leb]

Proof: Observe that

C~~ (v ,t) = A~~( ~

= A 
~ 

( 1  
~~~~~~~~~~~~~I d~ T r

a
t

= 
~~

by Theorem 2.6.1 and Proposition 2.3.1. Thus the covariations Cx~
(v ,t)

for all tcI determine rf~
(s)V(ds) for all r since F is strictly in-

creasing, and likewise is determined a.e . [Leb] since ~ is equivalent

to Lebesgue measure. [I

Applying Proposition 2.7.2 to system (2) we see that knowledge of

the finite-dimensional distributions of the output process X is equiva-

lent to knowing Ay (X
~
) for all YEL(X) and all vEV. In this case,

Ay(~~) = A~ ( f f
~
(t)
~t

V(dt))

= I f
~

(t)Ay t~~~
(d1t) 

~T

where for each Y€L(X) , Ay(~t
)€Lp (T

~
BT~

v) as we saw in the proof of

Theorem 2.5.5. Thus the finite-dimensional distributions of X determine

if and only if the family {Ay(~t
): Y~L(X) } ,  a subset of

L~(v)~ separates points on Lq(V)~

_ _ _ _  _ _
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As an example we show that for certain systems the finite-dimensional

distributions of X are more than is necessary, and in fact each impulse

response function is determined in Lq(V) by the covariation function

v€V .

2.7.6 PROPOSITION. Let ~ be a SctS process with independent incr~ nents ,

weaklu continuous from the right , I = [0,°°), F(t) = 
I ~~~~~ I I~ t f o r  a l l

t€T, and v(dt) = h(t)dt where h is chosen as in Proposition 2 . 5 . 1.  Let

- - 
. 

{G
~
,vE V} be a set of twice differentiable functions in L~ (v) tha t separ-

ate points on Lq(~) and satisfy G
~
(0) = 0. Let v€ V} be a set of

differentiable functions related to the functions G~ by

1

1dG (r) a-l
= 

ldr

and such tha t lim g.~(s) = 0 and

dg (s)
h(s) ds €Lq(V)

for all vEV. If the system is defined by

dg (s)
v 5

~~~~~ i~(~~~~ds

fo r  a ll  v€V, then each 
~u 

is determined by the covariation function

C~~(u,v), VEV .

Proof: Given UEV , then

C~~(u,v) = A
Xv

( 
~ 
fu(t t~~

(ltfl

= I f
~
(t)

~~ 
(
~ t)~~~

t)
-~~~~~~~~~~~ T v

= 
I ~~~~~ft)~~~ ~~ 

(
~t

)v(d t)
T I I f

~
(s)u(ds)dF

~ 1
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t ~
/ fu(t) f ( I  f (s)v(ds))~~~dr v(dt)
T 0 r V

• t ~° d  (s)
= 1 fu(t)1 (I (~~~~~~~ ) 

ds)~~~dr v(dt)
T O r

t
= 

/ 
fuCt) f (g~(r) )~~’dr v(dt)

T 0

t dG (r)
= 

/ f~
(t) 5 dr dr ~(dt)

I 0

= f f (t)G (t)v(dt)
T u V

for each vEV. Since {G
~
, VCV} separates points on Lq(V)~ it follows

that is determined by C~~ (u ,v) ,  vEV . Li

2.7 . 7 EXA?~1PZE. Let G
~
(t) = e tsin vt for vEfO ,~) and choose h(t) =

min(1,t 3) (Proposition 2.5.1). Then

1

dG (r)~~~~ - --i-- —k---v a-I. . ct -hg~(r) = dr = e (v cos yr - sin vr)

and

dg~(s)
= 

~~~~~~~~ ds

5
ct -h - —

1 e . ct-h
= 

-3 -l (sin vs - v cos vs)
min(l,s ) 

ct -

+ ~v
2 sin vs + v cos vs) (sin vs - v cos vs)~~1]

which clearly belongs to Lq(V) and converges to zero as s -* ~~~ -

An alternative approach to the system identification problem , when

the statistics of the output are known, is to investigate which systems
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will produce the same output (in distribution) to the same input. For

each system f , write

xw = 
5 

f (t)d~~, VEV-

-

where ~ is a SctS process, and let L(f) be the space of finite linear
I combinations of functions in vcV}. Then two output processes

- ~~~ and have the same finite dimensional distributions if and only

if the map from L(f) onto L(g) defined by

k~l
kv k 

H 

k~l~~~ k

for all integers n � 1, r1,.. - ,rnER , and v1,... ,V~EV~ is an isometry. We

shall content ourselves here with discussing the simplified problem when

V is a singleton:

S

(1) X
f 

= f f(t)d
~~I

(2) Xf = f f(t)
~t

v(dt) -

T

In system (1) with ~ a SctS process , we have Xf ~ Xg if and only if

I I f  I I
s~~ 

= I I~~~~I I s~ 
Also , if f and g are bounded functions vanishing out-

- side a bounded set, then Xf ~ Xg for all SaS ~ wi th independent increments
- 

if and only if I f ( t) I 
= g(tfl for all t. For system (2) with E~ as in

Theorem 2.6.1 , we have that Xf ~ Xg if and only if

1 f f  dv II L ( d p) = I ll g dv Il L (~~)

Moreover , for bounded functions f and g, Xf ~ Xg for all such inputs ~
if and only if

_  _ _ _ _  _ _ _ _ _
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I f fdv~ = I f gdv I

for all r.

2.7.8 PROPOSITION. Consider system (2) With

= J cos(tA )d~~ , t � 0

where ~ = {
~ , A � O} is a SaS proces s with independent increments,

weakly continuous from the right , such that F(A) = I k~I 1~ is a bounded

function and F(O) = 0. Then

Xf 
= f 

~f
(A )dC A

where

= f f(t)cos(tA)’u(dt) -

Consequentl y ,  Xf ~ Xg f o r  a given ~ i f  and onl y if

• 
‘~~

f 1t L (dF) = ) k ~g II L (dF) ‘

and Xf ~ Xg for all such ~ if and only if

I~f(~)I 
= I4~g(flI

for all A a 0.

The proof follows by a familiar line of argument.

-5
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III . PATH PROPERTIES

-~~~ Some known path properties of Gaussian processes can be easily

extended to SaS processes. For instance, the zero-one laws for Gaussian

processes in [Cambanis and Rajput 1973] hold as well for SaS processes

with no change in proof in view of the zero-one law for stable measures

in [Dudley and Kanter 1974] (see also [Fernique 1973]). This chapter
t

extends to p-th order or SaS processes certain results known for 2nd

order or Gaussian processes. Specifically we give necessary and suff i-

cient conditions for the measurability of a p-th order or a SaS process

(Section 1), necessary and sufficient conditions for the integrability of

almost all paths of a SctS process (Section 2), and suffic ient and neces-

sary and sufficient conditions for almost sure path absolute continuity

for p- th order and for SaS processes, respectively (Section 3). These

results are obtained by appropriate modification of the proofs of similar

results for second order or Gaussian processes.

1. Measurability of p-th order processes.

Let ~ = {
~~

: t(T} and r~ = {fl ~~ ~EI} be stochastic processes on the

probability space (Q,F,P) ,  where I is a Borel subset of a complete separ-

able metric space and 8(T) denotes the Borel subsets of T . The process

r~ is a xIff-~cation of ~ if P{~~ = = 1 for all t€T; r~ is called

rn(-’ao~pa.~ i~’ if (t,w) —> is a product measurable map from Txc~ into

R.  The existence of a measurable modification is frequently of interest

- - --- --5 -5—- - - -- -5 —-- - - - 5 - - - - -
~~~~~~~~~~~~ --—-- - 5 - -
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in the study of path properties.

The following condition for the existence of a measurable modifica-

tion is contained in [Cohn 1972]. We shall use ~ to denote the map

t —> ~ and shall specify the range space when required for clarity.t

Let M be the space of all real-valued random variables on (c~,F,P),and

define a metric p on M by

1~ 1~~2I
= 

[l+ I~ 1-c2 J)

for all ~1,~ 2€M. Then p metrizes the topology of convergence in probab-

ility. The process ~ has a measurab le modification if and only i f  the

map ~ from T to M is Bor e 1 measurable.

For p-th order processes we now obtain further equivalent conditions

for the existence of a measurable modification. Our l ine of proof follows

that in [Cambanis l975a] where the case p = 2 is treated.

3.1.1 THEOREM. Let {.
~ t

,tET) he a p -th order process with p > 1 or a

Sc*S process With 1 < a < 2, and let L(~) be the linear space of the

process. Then the fol lowing ar e equivalent:

(i) The process ~ has a measurable modificat ion.

(i i)  The map ~: T -
~ L(E~) has separable range and is such that,

for every t0cT, is 5(T)-measurable .
0

( , ~i i)  The map E :  I + L(~ ) is Bore l measurabl e.

(iv) L(~) is separable and fo r  et ’erp r,c L ( ~ )  the func t ion  Fj t) ~
Bore ? rneasl4rab le.

It suffices by Proposition 2.1.2 to prove the rcsult for p-th

order processes.
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Proof: (i) imp lies (ii). Consider {
~t

,tcT}, a measurable modification of

E~. Then for every t0€T, I = (Ej~~-~ t I P)I~
1) is 8(T)-measurable

0 0
by Fubini’s theorem. We next show that ~(T) is separable with respect

to the norm topology , i .e. ,  in L~(c~ F~P).

Assume for the moment tha t J is uniformly bounded on T. Now

by (i) it follows that ~(T) is a separable subset of M with respect to

the toplogy of convergence in probability. Thus there is a countable

subset N of E~(T) such that , for each tcl, there exists a sequence

~~ ~n l  c ~ converging in probability to e~. By [Hewitt and Stromberg

1965, p . 207] the sequence 
~~~~~~ 

converges weakly to in L~(Q~F~P)~

and therefore the linear manifold generated by N is dense in L(~) with

respect to the norm topology ([Rudin 1973, p. 65]). It follows that both

L(~) and ~(T) are separable.

Relaxing the above assumption, we let TN 
= { t~T: II ~ N}. Then

TN~
B(T) and ~(T) = U E~(T~) is clearly separable with respect to theN=l

norm topology.

(ii) imp lies (iii). [Hoffinann-J$rgensen 1973, p. 206]. If V is

an open subset of F~(T) in the norm topology, choose {tN} .l c T and

aN > 0 such that

V = U {~~ : II
N=l tN

Then
= 

N=l 
I t t N

I I < aN}c8(T)

(i ii) imp lies (iv) is clear.

( iv) implies (iii) follows from Theorem 2.1.1 and a theorem due to

B.J. Pettis ([Hille 1973, Theorem 7.5.10]).
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(iii) implies (i) is clear since convergence in L~(Q~F~P) implies

convergence in probability.

It should be noted that this result does not reflect the fact

that the existence of a measurable modification is a property of the

two-dimensional distributions of the process, as shown in [Hoffman-

r J$rgensen 1973].

3. 1.2 COROLLARY. A stochastic process ~ as in Theorem 3 .1 .1  has a

measurable modification under each of the fol lowing three conditions :

(i) ~ is a weakly continu ous process.

(i i)  T is an arbitrcr ry interval and the strong lef t (r igh t)  limit

of ~ exists at all but countab ly many tcT .

(iii) T is an arbitrary interval and ~ is an Sc~S process with

independent increments.

Proof: (i) If E is a weakly continuous process , then F~ (t) is a con-

• tinuous (hence measurable) function of t for every r~EL( F~). To see the

separability of L(~), let 1* be a countable dense subset of T and let N

be the space of all rational linear combinations of elements in

{~t,tET*}. Then N is a countable dense subset of L(~) by [Rudin 1973,

Theorem 3.12], and the existence of a measurable modification follows

from (iv) of Theorom 3.1.1.

(ii) Parts (i) and (ii)(a) of the proof in [Bulatovi~ and A~
’i~ 1976]

for second order processes hold with no alteration for the process ~ and

show that the set T~ of all points of discontinuity of ~ is countable.

Let T2 c T-T1 be a countable dense subset of T. Then the space of all

~~_ _ _ •~~~ _~~_ _ ~~~~•_,_ __, i -~~~~~~~~~
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rational linear combinations of elements in V~t
,tcTiuT2} is a countable

dense subset of L(~). It is clear that F(t) is Borel measurable for

every çcL(~) since it is a continuous function on T-T1. Thus ~ has a

measurable modification again by (iv) of Theorem 3.1.1.

: (iii) If ~ is SaS with independent increments, then F(t) = I I I
is an increasing function which therefore has at most countably many points

of discontinuity. Let T1 be the set of all points of discontinui ty of

F, and let T2 c T-T1 be a countable dense subset of T. From the rela-

tionship I ~ -~~1 a = jF(s)-F(t) I for all s,tET, it is easy to see that

L the space of all rational linear combinations of elements in {
~t

,tcT1uT2}

• is a countable dense subset of L(F~). For the measurability of

~€LR) , recall from Section 3 of Chaptei II that the right limit

Fç(t+0) exists for all t. fl

The next corollary provides a result for sub-Gaussian processes

analogous to the corresponding result for Gaussian processes ([Cambanis

l975a]).

3.1.3 COROLLA RY. If ~ is a sub—Goussian process~ ti~cn it ~ae a “~cas-

• urab ie modification if and only if L(~) is sep ara ble and C~js,t)

measurable.

• Proof : The two-dimensional c.f.’s of ~ are given by

• ~5,~
(ri,r2) 

= ~~~~~~~~~~~~~~~~~~

= e~~{-2 
2[R(s ,s)r~ + 2R(s,t)r1r2+R(t,t)r~]

2}

where R(s,t) is a covariance function, and clear ly
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1 1

I I
~t~ t~

I I = 2 2[R(t,t) - 2R(t,t0) + R(t0,t0)]~

Using the relationship preceding I~xample 2.7.1, it is straightforward

to show that

R(s ,t) = 2 C~~(t,t) 
a C~~(s,t)

Thus if C~~(s,t) is product measurable, then so is R(s,t), and hence

I I~ -c II is measurable in t for each fixed t0ET. Assuming L(~)0
• 

- • separable, the existence of a measurable modification therefore follows

from (ii) of Theorem 3.1.1.

• Conversely, if ~ has a measurable modification r~, then we can see

from Proposition 2.1.2 and Fubini’s theorem that I ‘~ s~~t
1 = l I T 1 5+11~ I I

is a product measurable function on TxT and that I ~ I I = I In~I I is

a measurable function on T. From

2~ Ir1~5+r2~~I ~2 = r~R(s,s) + 2r1r2R(s,t) + r~R(t,t)

for all r1,r2, one has

• 2 I I ~~
+
~~ J I 2 = R(s,s) + R(t,t) + 2R(s,t)

2 II ~ 11 2 
= R(s,s)

and thus
R(s,t) = 

~~~~~ 
- 1k5 11 2 

- I I~~I I 2

Consequently, R(s,t) is product measurable and the product measurability

of C~~(s,t) now follows from

-~~~~~~

~~ ~ 
— 

2 2R(s,t)
‘ ‘ — 

2-a 0

R(t , t) 2

For a general SczS process ~ it appears that C~r (s~
t) product meas-

urable and L(E~) separable are not sufficient for the existence of a
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measurable modification, though we do not have a counterexample. Since

• I I~~
-
~ I I  cannot be expressed in terms of C (t,t0) for 1 < a 2, we

0
cannot express the condition for a measurable modification in terms of

C~~(t,t0) except in the sub-Gaussian case (Gaussian when a = 2), where

I I
~~

-
~~

I 2 
= C~~(t ,t)a - 2C~~(t0,t0) 

a C~~(t,t0) + C~~(t0,t0Y~

If we set a(s,t) = I I~~~ I ‘ 
then of course product measurability

of a(s,t) implies measurability of o(t,t0) in t, for each fixed t0.

Conversely, if L(~) is separable artla(.,t0) is measurable for each tacT,

then (ii) of Theorem 3.1.1 implies the existence of a measurable modifi-

• : cation n and we can apply Fubirti ’s theorem to show that o(s,t) =

I In S-n~, I is product measurable. Hence condition (ii) in Theorem 3.1.1

• may be written in the more syninetric form:

(ii) ’ The map ~: T L(~) has separable range and the ~~~cY

o(s,t) = I R5~~ I I ~ B(T)x8(T)_measurable.

Final ly, we note that if ~ is SaS and L(~) is separable, then ~ has

an integral representation of the type

= I f~~~ d

where 
~ u’ 

- u ~-} is a SczS process wi th independent increments ,

= F(u), and ft(.)cL (dF) for all t ([Kuelbs 1973, Theorem 4.2]).

And conversely, if ~ has such a spectral representation, then L ( E )  is

separable since L(~) is separable (Corollary 3.1.2 (iii)). In particular ,

every measurable SctS process has such a spectral representation .
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2. Integrability of sample paths of SaS processes.

In this section we apply a result due to DeAcosta to obtain a neces-

sary and sufficient condition for almost all sample paths of an SaS

process to belong to L.~(T~A~v)~ 1 < p < a (Theorem 3.2.4). We also

show that a sample path integral of an SaS process is an SctS random

variable (Lemma 3.2.3).

3.2.1 [DeAcosta 1975] If ~i is an SaS Borel probabi l i ty measure ;~~

(T,A ,v) with measurable seminorm w , then for ever~’ r < a,

j W~d~~<~~

We begin by proving a lemma involving a p-th order process.

3.2.2 LEMMA. Let (T,A ,v) be a finite measure space, and let

= ~~~~~ be a measurable p -th order process with 1 < p < and

with < M < °~ for all t~T. For any element fELq(T~A~V)~ where

1 + = 1, the sample path integral

f f(t);(w)v(dt)
T

belongs to L(~).

Proof: From the measurability of E~ and Fubini ’s theorem , we get that

a.s., since

Ef J~ t (w)J~~
(dt) = f lI ~~II P v(dt) < M~v(T ) <

I I

Therefore ff(t)E
~t
(w)v(dt)EL

~
(Q)
~ 

since
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Elf f(t)~t
(w)v(dt) 1~ — [f I f(t) 1v(dt) ~~~~~~~~ I~v(dt)I T

In particular, the random variable f f(t)~t(w)v(dt) defines a continuous
linear functional on L(E~)*, and it follows from Theorem 2.1.5 and the

reflexivity of L(~) that there exists a unique ~eL(~) satisfying

A (n) = A (f f(t)~t
v(dt))

~~ for all ~fL (~).

Given any ç’ L~ (0), we apply Theorem 2.1.5 to obtain t e  L (~) such

that A~ = A
~

i on L(~j. Then

A ,(n - f f(t)
~~
(w)v(dt))

I

= A ,(n) - E[(~’)~~~f f(t)~t
v(dt)]

I

= A ,(r~) 
- f f(t)E[(~~)P~~~t]v(dt)T

= Aç (fl) 
- I f(t)A~(~~)v(dt)

= Ajn) - A~~ f(t)~t
u(dt)) = 0

Thus ~ = f f(t)
~~

(w)v(dt) a.s., whence f f(t)
~t
(w)v(dt)

~
L(
~
).

We next prove a stronger version of Lemma 3.2.2 for an SaS process

by using a truncation suggested by L.A. Shepp and used in [Rajput 1972,

Proposition 3.2], where a similar result is proved for Gaussian processes.

3.2.3 ;k~ ki~i . Let (T,A ,v) ! ~ ~ —j7ni tr ‘i~ea s7~r~ ~p aec , and let

= 
~~~~~~~~~~~~~~~~~~ 

1 ri-’as~rabh’ SciS ~~ ,‘ 
•‘~~~~

‘:‘ .“ t / ?  
~~
(. ,u) L~(T~A~v) ~.s.,

_  • ~~. • • • ~• • • ••-•~~~ • • • • • - • •  ••~~ .•-~~ •. -.~~—-
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where 1 < p < a. Then fo r  every element f E Lq(T~A~V)~ where ~~
- + = 1,

the samp le path integral

~ f(t )~ t (
~i) v (dt)

belongs to L (~ ) and is thus a SaS r and om variable.

Proof: For each integer n > 1 define a truncated process by

~~~~~t ,w) = 
~
(t
~
W)X{S :II~~l I<fl }(t)

and assume for the moment that v(T)< ~~~. Then the sample path integral

f f(t)~~’~~(ui)v(dt) belongs to L(~) by Lemma 3.2.2, and, by the dominatedI
convergence theorem,

5 f(t)~~~~(w)v(dt) 5 f(t)~~(w)v(dt)T I

as n -
~ ~~‘. Because almost sure convergence implies convergence in L(~)

for an SciS process ~~~, we therefore have that ~ f ( t )~ t (w)v(dt ) belongs

to L(~).

If v is a a-finite measure, let {Tm } .i be a monotone increasing

sequence of elements of A such that v(Tm) < for every m and U Tm 
= T.

m=l
Then

{f f ( t )~~~(w)x.~, (t) v (dt) }~ _ 1
I m -

in a sequence in L(~) that converges to 5 f(t)~t(w)~ (dt) by the domi-T
nated convergence theorem. fl

3.2.4 THEOREM . Let ~T,A ,v) be a a-finite measure space, let {
~~

,tcI}

• be ~z measurable SciS process, and suppose tha t L~(T~A~v) is separabl e,
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where 1 < p < a. Then f Rt I~
’v(dt) < a.s. if and onl y if

~ 
E (I

~~t I~~
)u(dt) 

~~~~~~~~ I

This result for a = 2 is contained in [Rajput 1972, Proposition 3.4].

Note that Proposition 2.1.2 provides an expression for E(I
~~~~I~~

) in terms

of the covariation of ~ on the diagonal.

Proof: Sufficiency is clear. For the necessity, define the map

0 -* L~(T~A~v) by

I ~(.,w) if ~(•,t~)cL (T ,A ,~~)p

0 otherwise

Then ~ is a measurable map from (0,F) to (L~~ B(L~))~ since the process ~
is measurable and L~(T~A~v) is separable. Thus ~ induces a measure ~
on L.~(T~A~v)  by

= Pc1~~ (B)

for all BE8(L~). If fL q(T~A~V)~ ~~
- + l~ and if f* denotes the element

of L~ (T,A ,v) correspondiilg to fELq(T~A~V)~ then we have that f*(F~(.,w))

= 1 f(t)~~(w)v(dt) defines an element of L ( E ~) by Lemma 3.2.3. Therefore

is an SciS distribution on R, since for every Borel subset B of R ,

= P~~~{xcL~(T~A~v): f*(x)€B}

= P{w€Q: f*(r(.,wfl€B }

Thus ~ is an SaS measure on L~ (T~A~v)~ so that by result 3.2.1 of

DeAcosta

I E (l~~ l’~
)v(dt) = E f I~t I~v (dt)

1’ I

= f I I~~ ,w ) I I~ P(d~ )
• 0 L~(T)
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= I I Ix I ~~ p (dx) <
~~~~~~~

. fl
L~(T) L~(T)

If (T,A ,v) = ([a,b],8, Leb), then Theorem 3.2.4 holds for p = 1.

The only alteration required to the proof is to take q = and use

a result in [Doob 1953, p. 64] instead of Lemma 3.2.3.

j 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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3. Absolute continuity of sample paths.

In this section we obtain sufficient conditions for the sample

paths of a p -th order process to be absolutely continuous (Theorem

3.3. 1) and show these conditions to be also necessary when the

process is SaS (Theorem 3.3.3).

If lB is a Banach space with norm I~ II and T = [a,b] is an inter-

val of R, then we write L1[T,B] for the space of Borel measurable

functions f:  I ~ F such that II f (t )IIEL 1(T,Leb). We call f absolu-

tely continuous if for every £ > 0 there exists a ó > 0 such chat

for every disjoint family {(sk,tk)}~~1 
of subinterval.s of T,

~~=l
(tk sk) � ~ implies that =l IIf (tk)-f(sk) I I  � c. The following

characterization of absolute continuity is given in [Br~zis 1973,

Appendice]: the function f: T lB is absolutely continuous if and

only if for every tcT it can be expressed in terms of a Bochner integral

t
f(t) = f(a) + f ~(s)ds

a

where hL1[T,E J .

We now present sufficient conditions for a p-th order process to

• have absolutely continuous paths. The argument used is from [Cambanis

1975b] where second order processes are considered .

3.3.1 THEOREM. Let ~ = 
~~t,

t€T} be a separable p -th order process e~z

(Q ,F,P), where p > 1 and T = [a,b]. Then each of the f e 7 7 o~’in~j  t~,e

equivalent aondi~ti•ons i~s sufficient for the sr~p e  [z ~ ~s f ~ to b

absolutely continuous with probahi 7.1 tp  one (a’z I • z ~‘~( ‘asur ab7 p —c h

order process as derivative):
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(i) The map I -
~~ L( ~ ) defined by t is absoZut~ ly continuous.

(ii) The function C~~(t) = A
~
(
~t
) is absolutel y continuous f o r  a l l

çeL (~), f o r  all t~T-T0 with Leb(T 0) = 0 the derivative C~ç ( t )  exists

fo r  a l l  ~€ L ( ~ ) ,  and

f I I~t I I d t < c o
T

where for each t€T-T0, 
~~ 

is the unique element of L(~) satisfy ing

A(
~t
) = C~~(t) for all ~€L(~).

-• 

Proof: The equivalence of (i) and (ii) is contained in [Brézis 1973,

p. 145]. If t F—> 
~~ 

is absolutely continuous , we have

= 

~a + I t~~d

• for all t€T where ~~L1[T,L(~)]. By Theorem 3.1.1, ~ has a measurable

modification , say n. Observe that

E f
b

Ifl (t )Idt �f
b

IIn(t ,~~ IL (0)dt = 

b

so ~(~,w)€L1(T,Leb) a.s., i.e . ,  for every wcQ-0t~ 
with P(00) = 0.

Define X by
t

~(a,w) + f ri(s ,w)ds, tcT, w~0-00X(t ,w) a

0 , tcT, wEc2 , •

and note that the sample paths of X are absolutely continuous.

Let F~ be a sequence of simple functions T -
~~ L ( ~ ) such that

t , 
- 

~(s)Il L (0)ds+ ~

for all t€ T. Then
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t t
E[

~~ xt I = E l f ~5ds - f r~dsI
a a

t t
= E~f ~~(s)ds 

- n(s)dsl

t ,-
� liin f E l~~~(s) - n(s)j ds

~~ a
t

< lim 5 II~~(s) - fl (S)II L (0)dS 
-.

n-~~ a p

Thus P{~~ = X
~

} = 1 for all tEl . Let S be a separating set for ~
with NcF , P(N) = 0, such that if wc0-W and tET-S, then ~(t,w) =

lint ~(s,w) .  Now PC~~ = X~ , Vt~S} = 1. Thus there exists with
s-’-t
sES

P(01) = 0 such that ~(t ,w)  = X(t,w) for all t€S and wcc2-01. Given

any tsT-S and any w€0-(NUO1),

~(t,w) = u r n  ~(s ,w) = lim X(s,ui) = X(t,w)
s~tscS s€S

since the paths of X are continuous. Thus, if wc0- (WIJQ1), then

= X(t,w) for all tEl’, and hence the sample paths of ~ are abso-

lutely continuous with probability one. p

In [Cainhanis l973~ it is shown for a separable Gaussian process

• that at every fixed tcT the paths of ~ are continuous, or differentiable ,

with probability zero or one. Also , if ~ is measurab le, then with

probability one its paths have essentially the same points of differen-

tiability and cont inuity. These same results follow for SaS processes

• . 

• 
(with no change in argument) by applying a zero-one law for stable

measures from [Dudley and Kanter 1974] . We now state in detail one
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of these results which will be used later.

3.3.2 THEOREM. [Cambanis] Let ~ = 
~~~

:tET) be a separable SctS

process , where T is any interval.

( i)  At every fixed point tEl the paths of ~ are differentiable

wit h pro bability nero or one.

L 

(ii) Let Td be the set of points t in T where the paths of ~

are differentiable with probability one, and Td(w) be the set of points

t in I where the path ~ ( , w) is differentiable.  If ~ is measurable,

then with probability one
IL

Leb{Id (w) ~ Td } = 0

The next result shows that the conditions in Theorem 3.3.1 are

necessary for a SaS process ~~~. Once again , we use the proof of a

similar result in [Canibanis 1975b] for Gaussian processes, certain

passages being lifted in their entirety.

3.3.3 THEOREM. Let ~ = {
~t,

tcT} be a separable SaS process with

T = [a ,h] and ci > 1. Then the following are equivalent :

(i) The paths of ~ are abso lutel•~ 
continuous with probabiii tp ~~~~~~~~.

(ii) The map T -~L(~) defined by t H> 
~~ 

ls zisclu tcl p c i ~~~~s.

(iii) The function C~~ (t) = Aj ~t
) is absolz4 t~~Z~i cont1nu::~s 

“ -i’ a71

for all tET-T0 wi th Leb(10) = 0 the d,’vP ’ • if P ’e C~.(t) .r:~srs

fur all r,€L (F ~), and

I II~ It dt < 
~~~~~~,

T

where f o r  each tcT-T0, 
~~ 

is the unique eler ’irnt f L(~ ) aatisf!Iin~7

A~~~~) = C~~ (t) for  all  ~FL( ~ ).
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Proof: (i)  ~~> (i i). Absolute continuity of a path implies differ-

entiability a.e. [Leb], and therefore Leb[T-Td(~
)] = 0 a.s. Since ~

has cont inuous paths with probability one , it is measurable. Thus

by Theorem 3.3.2, Leb[Td(w) A 1d1 = 0 a.s., and hence Leb(T -Td) = 0.

Take T0 = T-Td, and let with P(00) 
= 0 be such that ~(,w) is

absolutely continuous for all WEQ~~O0. Define ç by

• Ilimsup n[~ (t+ ~-,w) - ~(t,~)], tE [a,b), ~
c0-0

~? ( t ,w )  = n—~°
1. 0 , t€ [a,b), w€c20; t=b , WE0

Then ç is measurable and for all wco-c20 we have ~(t,u) = ~ ‘( t ,w) for

tETd(w) 
- {b}, where ~‘(•,w) denotes the path derivative of F(.,w).

Also, for all tETd 
- 

~b}, r~(t ,w) = E~’(t ,w) a.s. Now define n by

I~(t ,w ) , tcTd, WEO

n( t ,w) =

0 , tcT0, wc0

and note that ~ is measurable and SctS. Also , for all

- 

• n (,w) = ~~~,w) = ~‘(.,w) a.e. [Leb]

• on T , and ~ ‘(• ,w ) € L1 (T , Leb) since ~(• ,w) is absolutely continuous . It

follows that fl( ,w)EL1(T,Leb), and hence I 1
~ s 11 L ,-0~ds < by

I - 1~ ‘

the remark following Theorem 3.2 .4 .  In addition , for wEO-00, we

have
t

• ~(t,w) = ~(a,w) + f ri(s,w)ds
a

for all tET.

Let {(s k , t k ) }
~~ l he a fami ly  of d is jo in t  suhintervals of T. i hen

~ 
tk

~ IV’~ ‘~~ II~ cc~’~ 
‘
~~ E l f  n(s,w)dsl

k=l k k 1 “ k=l Sk

4
- ~~~~~

-• - 

~~~~~~

--—• 

~~~~~

--

~~~~~

— _ _•• _ _  

~~~~

• -• •
_ _
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n tk

~ I t i n  H (ds) = I ti n ds
— 

k U tk=i k’k

Therefore the map t I—~ is absolutely continuous by the absolute

continuity of the indefinite integral since 5 ‘ ‘~ S 11 L (0~ds <

1 1 ’

(ii) => (i) and (ii) <=> (iii) follow from Theorem 3.3.1. [1

Theorems 3.3.1 and 3.3.3 with appropriate modifications give condi-

tions for paths to be absolutely continuous with derivatives in

L~ (T~Leb) . They can also be extended to give conditions for paths to

have (n-i) continuous derivatives with the (n-l)-th derivative absolu-

tely continuous with derivative in L~(T ,Leb).

The following corollary generalizes a well known result for station-

ary Gaussi.tn processes to the (nonstationary) SctS case.

3.3.4 COROLLARY. Let {2~~~~, 
-

~~ < )~ < 
~ ‘} be a SciS process with indepen-

dent increments and F(X) = i k~i I a a bounded function. Then a separah7c

stochastic process {~~, act�b } defined by

~ 
j cos(tA)dC

~

has absolutely continuous samp le paths with probability one if and only

i f
IA I a dF(X) <

Proof: If ~ has absolutely continuous sample paths , then for every

gcL~
(dF) and ~ = f  g (A )d ~~ ,

C~r (t)  = f cos(tA)(g(A))~~dF(A)
-~~~

is absolutely continuous on [a ,bJ by Theorem 3.3.3. Thus for any
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• g0cL~,~~1(dF)~ (g0)
l/ci

~
lc1~~(dF) and

f cos(tA)g0(A)dF(X)

is absolutely continuous on [a ,b]. it is known that a function

f(t) 

:
~
!c0

~~~
t

~~~~~~~~~~ 
p finite, is absolutely continuous if and only

if I tA Idp (A ) < c=. Therefore f X~g0(A)dF(X) < for every positive

function g0EL~/~~1(dF), and it follows that 
f I A I

adF(X) < ~~~

For the converse, note that every tEL( ~) can be expressed as

~ = f g(A)d~~, where gEL~(dF). If AcL
~
(dF), then

• I IA iI g (A ) I~~ dF(A) <
~~~~

and therefore

C~~(t) =fcos(tA)(g(X))~~~dF( A )

is absolutely continuous. It is easily seen that C~~(t) exists at

every tE (a ,b) and that

= - f x  sin( tX)d
~~

satisfies C~~(t) = A
~
(
~t

) for all ~EL(~). Thus

h b
I i l~~i idt = f I I~ sin(tA) I I 1 (11.)dt

and therefore the paths of ~ are absolutely continuous wi th  probability

one by Theorem 3.3.3. P

It  should he remarked that a SaS process ~ = {~~, a~ t<h } with

independent increments cannot have absolutely continuous sample paths

(except in the trivial case where F(t) = I V~I ~ is a constant function).
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For , the claim is obvious if F is not absolutely continuous with re-

• spect to Lebesgue measure. In he case of absolutely continuous F ,

given any c > 0 arid 6 > 0 it is possible to choose a f ini te  family of

disjoint subintervals {(sk,tk)}~~l 
such that 

~k=l
(tk sk) s 6 , but

II~ 
-

~~~~~ 
I I  = ~~ iF(tk)~F(sk)i

u/ci > •

k=l k k k=l

To see this case, let (a1,b1) be a subinterval of Ia,b] such that

b1-a1 
< 6 , F(b1)-F(a1) > 0 , and define

h = 
{F(bi)- F(a1))

a/ci-l

By the uniform continuity of F we can choose n so large that It-s I <

implies 1F(t)-F(s)t < h , for all s,te [a ,b]. Let T(sk,tk)}~~l 
be a

partition of (a1,b1) into n subintervals of equal length. Then

• ~~~l (tk -sk) = b1-a1 < 6 , but

n n F(t ) -F (s  )

k~l
k k  1

1/a 

k=l hal/’~~~ 
=
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